IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v194y2025ics1366554524005192.html
   My bibliography  Save this article

A delay-resistant cloud supported control model for Optimizing vehicle platooning operation

Author

Listed:
  • Liu, Ying
  • Xu, Qing
  • Wang, Guangwei
  • Liu, Yi
  • Cai, Mengchi
  • Chen, Chaoyi
  • Wang, Jianqiang
  • Yin, Guodong

Abstract

The cloud supported system can effectively optimize vehicle platooning operation due to its centralized control mode in the cloud, but due to its wireless transmission characteristics and the complexity of the mixed traffic environment, the controlled traffic units will inevitably suffer from time delays and outside disturbances, which can lead to serious safety issues. To address the problem of platooning stable operation under stochastic road slope and bi-directional time-varying delay, a novel delay-resistant cloud supported control model is proposed in this paper. First, the mixed vehicle platoon system under the vehicle–road-cloud integrated architecture is established, considering the influence of driving intentions’ uncertainty of human-driven vehicles (HDVs), random variations of road slope, and bi-direction time-varying delay. Second, an exponential mean-square stable delay-dependent controller is designed to stabilize the cloud supported platoon system subject on the basis of robust H∞ approach and Lyapunov-Krasovskii theorem. In addition, the inner-vehicle stability of time-delay mixed platoon system is analyzed using the enhanced free weighting matrix (EFWM) approach along with the improved cone complementarity linearization (ICCL) algorithm. Third, a L2 string stability criterion is defined to inhibit the increasement of perturbances as they propagate along the platoon. Finally, real traffic data as well as different driving conditions are adopted to verify the control performance of the presented method. Compared to traditional vehicle platoon control method, the presented controller can achieve better disturbance suppression and tracking performance under stochastic interferences and bi-direction time-varying delay, the distance error between adjacent vehicles is less than 0.44 m at low and medium speeds.

Suggested Citation

  • Liu, Ying & Xu, Qing & Wang, Guangwei & Liu, Yi & Cai, Mengchi & Chen, Chaoyi & Wang, Jianqiang & Yin, Guodong, 2025. "A delay-resistant cloud supported control model for Optimizing vehicle platooning operation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005192
    DOI: 10.1016/j.tre.2024.103928
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524005192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Mehdi Aboulkacem & François Combes, 2023. "A micro-economic model of the market uptake of truck platooning," Post-Print hal-04446372, HAL.
    2. Chen, Yan & Huang, Zhenhua & Ai, Hongshan & Guo, Xingkun & Luo, Fan, 2021. "The Impact of GIS/GPS Network Information Systems on the Logistics Distribution Cost of Tobacco Enterprises," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Liu, Xiaohan & Qu, Xiaobo & Ma, Xiaolei, 2021. "Improving flex-route transit services with modular autonomous vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    4. Aboulkacem, El Mehdi & Combes, François, 2023. "A micro-economic model of the market uptake of truck platooning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yilin & Zhang, Junlong, 2025. "The full truckload pickup and delivery problem with truck platooning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    2. Wang, Xuan & Qin, Hongmao & Bian, Yougang & Zhao, Dezong & Zheng, Nan, 2025. "String stability under general topologies for CAVs: A coupled sliding surface-based distributed TMPC approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    3. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    4. Jiayi Li & Zhaocheng He & Jiaming Zhong, 2022. "The Multi-Type Demands Oriented Framework for Flex-Route Transit Design," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    5. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    6. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    7. Vikneswari Someetheram & Muhammad Fadhil Marsani & Mohd Shareduwan Mohd Kasihmuddin & Nur Ezlin Zamri & Siti Syatirah Muhammad Sidik & Siti Zulaikha Mohd Jamaludin & Mohd. Asyraf Mansor, 2022. "Random Maximum 2 Satisfiability Logic in Discrete Hopfield Neural Network Incorporating Improved Election Algorithm," Mathematics, MDPI, vol. 10(24), pages 1-29, December.
    8. Li, Mingyang & Tang, Jinjun, 2023. "Simulation-based optimization considering energy consumption for assisted station locations to enhance flex-route transit," Energy, Elsevier, vol. 277(C).
    9. Zhang, Wei & Liu, Jiahui & Wang, Kai & Wang, Liang, 2024. "Routing and charging optimization for electric bus operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    10. Zou, Kaijie & Zhang, Ke & Li, Meng, 2024. "Operational design for modular electrified transit in corridor areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    11. Ande Chang & Yuan Cong & Chunguang Wang & Yiming Bie, 2024. "Optimal Vehicle Scheduling and Charging Infrastructure Planning for Autonomous Modular Transit System," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
    12. Chen, Xinyuan & Wu, Shining & Liu, Yannick & Wu, Weiwei & Wang, Shuaian, 2022. "A patrol routing problem for maritime Crime-Fighting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    13. Liu, Yuhao & Chen, Zhibin & Wang, Xiaolei, 2024. "Alleviating bus bunching via modular vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    14. Chen, Shukai & Wang, Hua & Xiao, Ling & Meng, Qiang, 2022. "Random capacity for a single lane with mixed autonomous and human-driven vehicles: Bounds, mean gaps and probability distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    15. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2022. "Optimal deployment of autonomous buses into a transit service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    16. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    17. Zhang, Jiyu & Ge, Ying-En & Tang, Chunyan & Zhong, Meisu, 2024. "Optimising modular-autonomous-vehicle transit service employing coupling–decoupling operations plus skip-stop strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    18. Yiwei Wu & Hongyu Zhang & Shuaian Wang & Lu Zhen, 2023. "Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
    19. Liu, Weihua & Zhang, Jiahui & Shi, Yangyan & Lee, Paul Tae-Woo & Liang, Yanjie, 2022. "Intelligent logistics transformation problems in efficient commodity distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    20. Li, Qianwen & Li, Xiaopeng, 2022. "Trajectory planning for autonomous modular vehicle docking and autonomous vehicle platooning operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.