IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2645-d1614074.html
   My bibliography  Save this article

Modular Scheduling Optimization of Multi-Scenario Intelligent Connected Buses Under Reservation-Based Travel

Author

Listed:
  • Wei Shen

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
    China Design Group Co., Ltd., Nanjing 210001, China)

  • Honglu Cao

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Jiandong Zhao

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

Abstract

In the context of big data and intelligent connectivity, optimizing scheduled bus dispatch can enhance urban transit efficiency and passenger experience, which is vital for the sustainable development of urban transportation. This paper, based on existing fixed bus stops, integrates traditional demand-responsive transit and travel booking models, considering the spatiotemporal variations in scheduled travel demands and passenger flows and addressing the combined scheduling issues of fixed-capacity bus models and skip-stop strategies. By leveraging intelligent connected technologies, it introduces a dynamic grouping method, proposes an intelligent connected bus dispatching model, and optimizes bus timetables and dispatch control strategies. Firstly, the inherent travel characteristics of potential reservation users are analyzed based on actual transit data, subsequently extracting demand data from reserved passengers. Secondly, a two-stage optimization program is proposed, detailing passenger boarding and alighting at each stop and section passenger flow conditions. The first stage introduces a precise bus–traveler matching dispatch model within a spatial–temporal–state framework, incorporating ride matching to minimize parking frequency in scheduled travel scenarios. The second stage addresses spatiotemporal variations in passenger demand and station congestion by employing a skip-stop and bus operation control strategy. This strategy enables the creation of an adaptable bus operation optimization model for temporal dynamics and station capacity. Finally, a dual-layer optimization model using an adaptive parameter grid particle swarm optimization algorithm is proposed. Based on Beijing’s Route 300 operational data, the simulation-driven study implements contrasting scenarios of different bus service patterns. The results demonstrate that this networked dispatching system with dynamic vehicle grouping reduces operational costs by 29.7% and decreases passenger waiting time by 44.15% compared to baseline scenarios.

Suggested Citation

  • Wei Shen & Honglu Cao & Jiandong Zhao, 2025. "Modular Scheduling Optimization of Multi-Scenario Intelligent Connected Buses Under Reservation-Based Travel," Sustainability, MDPI, vol. 17(6), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2645-:d:1614074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2019. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Discrete modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 1-19.
    2. Daganzo, Carlos F., 1984. "Checkpoint dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 315-327.
    3. Liu, Xiaohan & Qu, Xiaobo & Ma, Xiaolei, 2021. "Improving flex-route transit services with modular autonomous vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    4. Vismara, Luca & Chew, Lock Yue & Saw, Vee-Liem, 2021. "Optimal assignment of buses to bus stops in a loop by reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    5. Su, Yang & Yang, Hai, 2025. "Enhancing feeder bus service coverage with Multi-Agent Reinforcement Learning: A case study in Hong Kong," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    6. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiyu & Ge, Ying-En & Tang, Chunyan & Zhong, Meisu, 2024. "Optimising modular-autonomous-vehicle transit service employing coupling–decoupling operations plus skip-stop strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    2. Jiayi Li & Zhaocheng He & Jiaming Zhong, 2022. "The Multi-Type Demands Oriented Framework for Flex-Route Transit Design," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    3. Li, Qianwen & Li, Xiaopeng, 2022. "Trajectory planning for autonomous modular vehicle docking and autonomous vehicle platooning operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    4. Zou, Kaijie & Zhang, Ke & Li, Meng, 2024. "Operational design for modular electrified transit in corridor areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    5. Ande Chang & Yuan Cong & Chunguang Wang & Yiming Bie, 2024. "Optimal Vehicle Scheduling and Charging Infrastructure Planning for Autonomous Modular Transit System," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
    6. Liu, Yuhao & Chen, Zhibin & Wang, Xiaolei, 2024. "Alleviating bus bunching via modular vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    7. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2022. "Optimal deployment of autonomous buses into a transit service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    8. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    9. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    10. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    12. Itani, Alaa & Klumpenhouwer, Willem & Shalaby, Amer & Hemily, Brendon, 2024. "Guiding principles for integrating on-demand transit into conventional transit networks: A review of literature and practice," Transport Policy, Elsevier, vol. 147(C), pages 183-197.
    13. Sayarshad, Hamid R. & Gao, H. Oliver, 2020. "Optimizing dynamic switching between fixed and flexible transit services with an idle-vehicle relocation strategy and reductions in emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 198-214.
    14. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    15. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    16. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    17. Chen, Zhiwei & Li, Xiaopeng, 2021. "Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    18. Li, Yuwei & Miller, Mark & Cassidy, Michael, 2009. "Improving Mobility through Enhanced Transit Services: Transit Taxi Service for Areas with Low Passenger Demand Density," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3mc4j70f, Institute of Transportation Studies, UC Berkeley.
    19. Honglu Cao & Jiandong Zhao, 2025. "Optimizing Modular Vehicle Public Transportation Services with Short-Turning Strategy and Decoupling/Coupling Operations," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
    20. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2645-:d:1614074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.