IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v193y2025ics1366554524004071.html
   My bibliography  Save this article

Stockyard allocation in dry bulk ports considering resource consumption reduction of spraying operations

Author

Listed:
  • Wang, Wenyuan
  • Guo, Jiaqi
  • Tian, Qi
  • Peng, Yun
  • Cao, Zhen
  • Liu, Keke
  • Peng, Shitao

Abstract

Stockyard allocation is a crucial segment of operational decision-making in dry bulk ports (DBPs). The stockyard allocation plan determines the storage position and duration of each stockpile to avoid operational delays in stockyards. Spraying operations, a unique operation in DBPs, are significantly influenced by stockyard allocation plans. Port operators regularly conduct spraying operations to prevent dust diffusion during the storage of dry bulk materials in stockyards. The spraying operation system consumes substantial electrical energy to transport the water to the designated material pile and spray large amounts of water onto its surface. Due to the layout constraints of pipelines and spraying nozzles, different stockyard allocation plans lead the varying consumptions of electrical energy and water resources for spraying operations. However, previous studies on the stockyard allocation problem frequently ignore the impacts of the stockyard allocation plan on the resource consumption of spraying operations. To fill this gap, this paper proposes a stockyard allocation model that uniquely considers the resource consumption of spraying operations to balance operation efficiency and resource consumption in stockyards from a global perspective. With the goal of minimizing the total cost, including operation delay penalties in stockyards and the electricity and water costs of spraying operations, a series of comprehensive experiments was conducted based on practical data collected from a major DBP in China under varying stockpile densities and stockyard efficiency properties. The results clearly show significant differences in the stockyard allocation plan and the total cost resulting from considering and disregarding the resource consumption of spraying operations in the stockyard allocation decision-making process. With only a 3.09% increase in average delay time in stockyards, the proposed model can reduce the total cost by 19.26%, the electricity cost by 54.06% and the water cost reduction by 35.09%. Meanwhile, the carbon emissions are reduced 75 tons on average for spraying operations and the Whale Optimization Algorithm (WOA) performs well on large-scale instances. The proposed model can avoid unnecessary resource consumption of spraying operations with acceptable operation delay penalties in stockyards.

Suggested Citation

  • Wang, Wenyuan & Guo, Jiaqi & Tian, Qi & Peng, Yun & Cao, Zhen & Liu, Keke & Peng, Shitao, 2025. "Stockyard allocation in dry bulk ports considering resource consumption reduction of spraying operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:transe:v:193:y:2025:i:c:s1366554524004071
    DOI: 10.1016/j.tre.2024.103816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524004071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    2. Dechezleprêtre, Antoine & Nachtigall, Daniel & Venmans, Frank, 2023. "The joint impact of the European Union emissions trading system on carbon emissions and economic performance," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    3. Unsal, Ozgur & Oguz, Ceyda, 2019. "An exact algorithm for integrated planning of operations in dry bulk terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 103-121.
    4. Sun, Defeng & Meng, Ying & Tang, Lixin & Liu, Jinyin & Huang, Baobin & Yang, Jiefu, 2020. "Storage space allocation problem at inland bulk material stockyard," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    5. Soudagar A K Irfan Babu & Saurabh Pratap & Geet Lahoti & Kiran J Fernandes & Manoj K Tiwari & Matthew Mount & Yu Xiong, 2015. "Minimizing delay of ships in bulk terminals by simultaneous ship scheduling, stockyard planning and train scheduling," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 17(4), pages 464-492, December.
    6. Sheng-Wen Zhou & Shun-Sheng Guo & Wen-Xiang Xu & Bai-Gang Du & Jun-Yong Liang & Lei Wang & Yi-Bing Li, 2024. "Digital Twin-Based Pump Station Dynamic Scheduling for Energy-Saving Optimization in Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 2773-2789, June.
    7. Mohammad Karamouz & Mohammadreza Zare & Elham Ebrahimi, 2023. "System Dynamics-based Carbon Footprint Assessment of Industrial Water and Energy Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2039-2062, March.
    8. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    9. Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Xu, Yunzhuo & Guo, Zijian, 2022. "Joint berth allocation and ship loader scheduling under the rotary loading mode in coal export terminals," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 229-260.
    10. Umang, Nitish & Bierlaire, Michel & Vacca, Ilaria, 2013. "Exact and heuristic methods to solve the berth allocation problem in bulk ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 14-31.
    11. Reza Eslamipoor & Abbas Sepehriyar, 2024. "Promoting green supply chain under carbon tax, carbon cap and carbon trading policies," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4901-4912, July.
    12. Saurabh Pratap & Manoj Kumar B & Divyanshu Saxena & M.K. Tiwari, 2016. "Integrated scheduling of rake and stockyard management with ship berthing: a block based evolutionary algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4182-4204, July.
    13. Zhang, Pengfei & Cai, Wenqiu & Yao, Mingtao & Wang, Zhiyou & Yang, Luzhen & Wei, Wendong, 2020. "Urban carbon emissions associated with electricity consumption in Beijing and the driving factors," Applied Energy, Elsevier, vol. 275(C).
    14. Kevin Tierney & Dario Pacino & Stefan Voß, 2017. "Solving the pre-marshalling problem to optimality with A* and IDA," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 223-259, June.
    15. Gang Ren & Xiaohan Wang & Jiaxin Cai & Shujuan Guo, 2021. "Allocation and Scheduling of Handling Resources in the Railway Container Terminal Based on Crossing Crane Area," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    16. Zhen, Lu & Xu, Zhou & Wang, Kai & Ding, Yi, 2016. "Multi-period yard template planning in container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 700-719.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Xu, Yunzhuo & Guo, Zijian, 2022. "Joint berth allocation and ship loader scheduling under the rotary loading mode in coal export terminals," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 229-260.
    2. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    3. Sun, Defeng & Meng, Ying & Tang, Lixin & Liu, Jinyin & Huang, Baobin & Yang, Jiefu, 2020. "Storage space allocation problem at inland bulk material stockyard," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    4. Matthew E. H. Petering & Yong Wu & Wenkai Li & Mark Goh & Robert Souza & Katta G. Murty, 2017. "Real-time container storage location assignment at a seaport container transshipment terminal: dispersion levels, yard templates, and sensitivity analyses," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 369-402, December.
    5. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    6. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    7. Wang, Mengyao & Zhou, Chenhao & Wang, Aihu, 2022. "A cluster-based yard template design integrated with yard crane deployment using a placement heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    8. Dafnomilis, I. & Duinkerken, M.B. & Junginger, M. & Lodewijks, G. & Schott, D.L., 2018. "Optimal equipment deployment for biomass terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 147-163.
    9. Xuecheng Tian & Bo Jiang & King-Wah Pang & Yu Guo & Yong Jin & Shuaian Wang, 2024. "Solving Contextual Stochastic Optimization Problems through Contextual Distribution Estimation," Mathematics, MDPI, vol. 12(11), pages 1-14, May.
    10. Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    11. Bouzekri, Hamza & Bara, Najat & Alpan, Gülgün & Giard, Vincent, 2022. "An integrated Decision Support System for planning production, storage and bulk port operations in a fertilizer supply chain," International Journal of Production Economics, Elsevier, vol. 252(C).
    12. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    13. Iris, Çağatay & Christensen, Jonas & Pacino, Dario & Ropke, Stefan, 2018. "Flexible ship loading problem with transfer vehicle assignment and scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 113-134.
    14. Hamza Bouzekri & Gülgün Alpan & Vincent Giard, 2022. "Integrated Laycan and Berth Allocation Problem with ship stability and conveyor routing constraints in bulk ports," Working Papers hal-03431793, HAL.
    15. João Luiz Marques Andrade & Gustavo Campos Menezes, 2023. "A column generation-based heuristic to solve the integrated planning, scheduling, yard allocation and berth allocation problem in bulk ports," Journal of Heuristics, Springer, vol. 29(1), pages 39-76, February.
    16. Huang, Mingzhong & He, Junliang & Yu, Hang & Wang, Yu, 2025. "Stack-based yard template generation in automated container terminals under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    17. Wang, Wenyuan & Liu, Huakun & Tian, Qi & Xia, Zicheng & Liu, Suri & Peng, Yun, 2024. "An enhanced variable neighborhood search method for refrigerated container stacking and relocation problem with duplicate priorities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    18. Guo, Zijian & Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Feng, Peng, 2021. "An integrated model for vessel traffic and deballasting scheduling in coal export terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    19. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    20. Zhou, Chenhao & Wang, Wencheng & Li, Haobin, 2020. "Container reshuffling considered space allocation problem in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:193:y:2025:i:c:s1366554524004071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.