IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v44yi8-9p1132-1147.html
   My bibliography  Save this article

Access control policies without inside queues: Their properties and public policy implications

Author

Listed:
  • Zhang, H.M.
  • Shen, Wei

Abstract

An access control policy that eliminates all queues beyond the entry points to a network has obvious benefits, which include smooth travel and predictable travel times inside the network. Yet it has never been proven, to the best of our knowledge, whether excluding inside queues yields sub-optimal network performance or, in other words, allowing inside queues can actually further reduce the system travel cost. Moreover, it is not clear whether an optimal control policy derived from efficiency considerations can also be a fair policy to all road users. This paper provide answers to these questions in the context of a monocentric network. By analyzing the structure of the access control problem considering all feasible policies (with/without inside queues), we show that the minimal system cost realizable by access control can be obtained without directly solving a non-convex optimization program, and can indeed always be achieved by a control policy excluding all of the inside queues. These optimal policies are defined by a polyhedral set and a Finite Generation Algorithm can be applied to derive the analytical form of this set. The optimal policies are not unique in general, thus making it possible to achieve both minimal system cost and fairness simultaneously.

Suggested Citation

  • Zhang, H.M. & Shen, Wei, 2010. "Access control policies without inside queues: Their properties and public policy implications," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1132-1147, September.
  • Handle: RePEc:eee:transb:v:44:y::i:8-9:p:1132-1147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(09)00161-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    2. Zhang, H. M. & Recker, W. W., 1999. "On optimal freeway ramp control policies for congested traffic corridors," Transportation Research Part B: Methodological, Elsevier, vol. 33(6), pages 417-436, August.
    3. Lei Zhang & David Levinson, 2005. "Balancing Efficiency and Equity of Ramp Meters," Working Papers 200508, University of Minnesota: Nexus Research Group.
    4. Carey, Malachy, 1992. "Nonconvexity of the dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 127-133, April.
    5. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    6. Lovell, David J. & Daganzo, Carlos F., 2000. "Access control on networks with unique origin-destination paths," Transportation Research Part B: Methodological, Elsevier, vol. 34(3), pages 185-202, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    2. Xiao, Feng & Shen, Wei & Michael Zhang, H., 2012. "The morning commute under flat toll and tactical waiting," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1346-1359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:44:y::i:8-9:p:1132-1147. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.