IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Access control policies without inside queues: Their properties and public policy implications

Listed author(s):
  • Zhang, H.M.
  • Shen, Wei
Registered author(s):

    An access control policy that eliminates all queues beyond the entry points to a network has obvious benefits, which include smooth travel and predictable travel times inside the network. Yet it has never been proven, to the best of our knowledge, whether excluding inside queues yields sub-optimal network performance or, in other words, allowing inside queues can actually further reduce the system travel cost. Moreover, it is not clear whether an optimal control policy derived from efficiency considerations can also be a fair policy to all road users. This paper provide answers to these questions in the context of a monocentric network. By analyzing the structure of the access control problem considering all feasible policies (with/without inside queues), we show that the minimal system cost realizable by access control can be obtained without directly solving a non-convex optimization program, and can indeed always be achieved by a control policy excluding all of the inside queues. These optimal policies are defined by a polyhedral set and a Finite Generation Algorithm can be applied to derive the analytical form of this set. The optimal policies are not unique in general, thus making it possible to achieve both minimal system cost and fairness simultaneously.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

    Volume (Year): 44 (2010)
    Issue (Month): 8-9 (September)
    Pages: 1132-1147

    in new window

    Handle: RePEc:eee:transb:v:44:y::i:8-9:p:1132-1147
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    2. Zhang, H. M. & Recker, W. W., 1999. "On optimal freeway ramp control policies for congested traffic corridors," Transportation Research Part B: Methodological, Elsevier, vol. 33(6), pages 417-436, August.
    3. Lei Zhang & David Levinson, 2005. "Balancing Efficiency and Equity of Ramp Meters," Working Papers 200508, University of Minnesota: Nexus Research Group.
    4. Carey, Malachy, 1992. "Nonconvexity of the dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 127-133, April.
    5. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    6. Lovell, David J. & Daganzo, Carlos F., 2000. "Access control on networks with unique origin-destination paths," Transportation Research Part B: Methodological, Elsevier, vol. 34(3), pages 185-202, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:44:y::i:8-9:p:1132-1147. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.