IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v118y2018icp31-65.html
   My bibliography  Save this article

Stability analysis and variable speed limit control of a traffic flow model

Author

Listed:
  • Zhang, Yihang
  • Ioannou, Petros A.

Abstract

The cell transmission traffic flow model (CTM) has attracted considerable interest in the field of transportation due to its simplicity as well as the ability to capture most of the macroscopic traffic flow characteristics. The stability properties of the CTM under different demand and capacity constraints are not always obvious. In addition, the impact of microscopic phenomena such as forced lane changes at bottlenecks leading to capacity drop is not captured by the CTM. In this paper, we start with a single section and modify the CTM to account for capacity drop. We analyze the stability properties of the CTM under all possible demand and capacity constraints as well as all possible initial density conditions. The analysis is used to motivate the design of variable speed limit (VSL) control to overcome capacity drop and achieve the maximum possible flow under all feasible traffic situations. The results are extended to multiple sections, where the stability properties of the open-loop system are analyzed and a VSL control scheme is designed and shown to achieve the objective of maximizing the traffic flow under different demand and capacity constraints. Unlike the open loop system where an infinite number of equilibrium points exist under certain demand levels, the proposed nonlinear VSL scheme guarantees exponential convergence to a unique equilibrium point that corresponds to maximum possible flow and speed under all possible demand levels and capacity constraints.

Suggested Citation

  • Zhang, Yihang & Ioannou, Petros A., 2018. "Stability analysis and variable speed limit control of a traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 31-65.
  • Handle: RePEc:eee:transb:v:118:y:2018:i:c:p:31-65
    DOI: 10.1016/j.trb.2018.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151830417X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, Anupam & Jin, Wen-Long & Lebacque, Jean-Patrick, 2015. "A modified Cell Transmission Model with realistic queue discharge features at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 302-315.
    2. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    3. repec:eee:transb:v:106:y:2017:i:c:p:52-75 is not listed on IDEAS
    4. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:118:y:2018:i:c:p:31-65. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.