IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p265-d1024804.html
   My bibliography  Save this article

Differential Evolution Based Numerical Variable Speed Limit Control Method with a Non-Equilibrium Traffic Model

Author

Listed:
  • Irena Strnad

    (Traffic Technical Institute, Faculty of Civil and Geodetic Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia)

  • Rok Marsetič

    (Traffic Technical Institute, Faculty of Civil and Geodetic Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia)

Abstract

This paper introduces a numerical variable speed limit (VSL) control method on a motorway, modeled by the system of partial differential equations (PDEs) of a non- equilibrium continuum traffic model. The method consists of a macroscopic simulation (i.e., numerical solution of the system of PDEs of the continuum model), introduction of the solution-based cost function and numerical optimization with a differential evolution algorithm (DE). Due to the numerical solution scheme, the method enables application of a wide range of continuum traffic models without prior discretization of PDEs. In this way, the method overcomes the limitations of the basic continuum models and represents a step towards more accurate traffic modelling in control strategies. In this paper, we determine optimal variable speed limits with the DE algorithm on a motorway section modeled by the modified switching curve model, which is a non-equilibrium continuum model consistent with the three-phase traffic flow theory. The effectiveness of the determined variable speed limits is validated using microsimulations of the test section, which show promising reductions of queue lengths and number of stops.

Suggested Citation

  • Irena Strnad & Rok Marsetič, 2023. "Differential Evolution Based Numerical Variable Speed Limit Control Method with a Non-Equilibrium Traffic Model," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:265-:d:1024804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    2. Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
    3. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    4. Yang, Haifei & Zhai, Xue & Zheng, Changjiang, 2018. "Effects of variable speed limits on traffic operation characteristics and environmental impacts under car-following scenarios: Simulations in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 567-577.
    5. Daganzo, Carlos F., 1995. "Requiem for second-order fluid approximations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 277-286, August.
    6. Zhang, Yihang & Ioannou, Petros A., 2018. "Stability analysis and variable speed limit control of a traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 31-65.
    7. Krešimir Kušić & Edouard Ivanjko & Filip Vrbanić & Martin Gregurić & Ivana Dusparic, 2021. "Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning," Mathematics, MDPI, vol. 9(23), pages 1-28, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    2. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    3. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    4. Bharathi, Dhivya & Vanajakshi, Lelitha & Subramanian, Shankar C., 2022. "Spatio-temporal modelling and prediction of bus travel time using a higher-order traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    5. Fan, De-li & Zhang, Yi-cai & Shi, Yin & Xue, Yu & Wei, Fang-ping, 2018. "An extended continuum traffic model with the consideration of the optimal velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 402-413.
    6. Yaroslav Kholodov & Andrey Alekseenko & Viktor Kazorin & Alexander Kurzhanskiy, 2021. "Generalization Second Order Macroscopic Traffic Models via Relative Velocity of the Congestion Propagation," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
    7. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    8. Jing, Dian & Yao, Enjian & Chen, Rongsheng, 2023. "Moving characteristics analysis of mixed traffic flow of CAVs and HVs around accident zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    9. Yuan, Yun & Zhang, Zhao & Yang, Xianfeng Terry & Zhe, Shandian, 2021. "Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 88-110.
    10. Salim Mammar & Jean-Patrick Lebacque & Habib Haj Salem, 2009. "Riemann Problem Resolution and Godunov Scheme for the Aw-Rascle-Zhang Model," Transportation Science, INFORMS, vol. 43(4), pages 531-545, November.
    11. Gabriel Obed Fosu & Francis Tabi Oduro & Carlo Caligaris, 2021. "Multilane analysis of a viscous second-order macroscopic traffic flow model," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-17, February.
    12. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    13. Zhai, Cong & Wu, Weitiao, 2022. "A continuum model considering the uncertain velocity of preceding vehicles on gradient highways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    14. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    15. Sun, Fengxin & Wang, Jufeng & Cheng, Rongjun, 2019. "An improved anisotropic continuum model considering the driver’s desire for steady driving," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1449-1462.
    16. Li, Jia & Zhang, H.M., 2013. "The variational formulation of a non-equilibrium traffic flow model: Theory and implications," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 314-325.
    17. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    18. Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
    19. García-Chan, N. & Alvarez-Vázquez, L.J. & Martínez, A. & Vázquez-Méndez, M.E., 2021. "Designing an ecologically optimized road corridor surrounding restricted urban areas: A mathematical methodology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 745-759.
    20. Lebacque, Jean-Patrick & Khoshyaran, Megan M., 2013. "A variational formulation for higher order macroscopic traffic flow models of the GSOM family," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 245-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:265-:d:1024804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.