IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v104y2017icp501-521.html
   My bibliography  Save this article

Lagrangian relaxation for the reliable shortest path problem with correlated link travel times

Author

Listed:
  • Zhang, Yuli
  • Max Shen, Zuo-Jun
  • Song, Shiji

Abstract

Finding a reliable shortest path (RSP) in a stochastic network is a fundamental problem in transportation science. Link travel time correlation significantly affects path reliability, but also greatly increases the complexity of the RSP problem due to the quadratic form of the standard deviation term. Lagrangian relaxation (LR) based on problem reformulation, which only needs to solve a series of shortest path problems, has been recognized as an efficient method to obtain near-optimal RSPs with the optimality gap guarantee. This paper proposes a novel LR approach based on a new convex problem reformulation, and new methods to update Lagrangian multipliers and handle negative cycles of the resulting shortest path problems. Different from existing LR approaches, which adopt the classical subgradient method to solve the dual problem, a constraint generation (CG) algorithm and a subgradient projection (SP) algorithm are proposed to update Lagrangian multipliers effectively, and both algorithms are further modified to handle negative cycles. We also reveal the connection between different reformulations of the RSP problem and show that the proposed approach has a smaller duality gap than existing ones. Experiments on real transportation networks validate the effectiveness of the proposed approach in terms of convergence rate, run time, duality gap and optimality by comparison with the existing LR approaches and the outer approximation algorithm.

Suggested Citation

  • Zhang, Yuli & Max Shen, Zuo-Jun & Song, Shiji, 2017. "Lagrangian relaxation for the reliable shortest path problem with correlated link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 501-521.
  • Handle: RePEc:eee:transb:v:104:y:2017:i:c:p:501-521
    DOI: 10.1016/j.trb.2017.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516307688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    2. Brownstone, David & Ghosh, Arindam & Golob, Thomas F. & Kazimi, Camilla & Van Amelsfort, Dirk, 2003. "Drivers' willingness-to-pay to reduce travel time: evidence from the San Diego I-15 congestion pricing project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(4), pages 373-387, May.
    3. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    4. Bi Chen & William Lam & Agachai Sumalee & Qingquan Li & Hu Shao & Zhixiang Fang, 2013. "Finding Reliable Shortest Paths in Road Networks Under Uncertainty," Networks and Spatial Economics, Springer, vol. 13(2), pages 123-148, June.
    5. Ravi Seshadri & Karthik K. Srinivasan, 2012. "An Algorithm for the Minimum Robust Cost Path on Networks with Random and Correlated Link Travel Times," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 171-208, Springer.
    6. Xing, Tao & Zhou, Xuesong, 2011. "Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1660-1679.
    7. Noland, Robert B. & Small, Kenneth A. & Koskenoja, Pia Maria & Chu, Xuehao, 1998. "Simulating travel reliability," Regional Science and Urban Economics, Elsevier, vol. 28(5), pages 535-564, September.
    8. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    9. H. Frank, 1969. "Shortest Paths in Probabilistic Graphs," Operations Research, INFORMS, vol. 17(4), pages 583-599, August.
    10. Shahabi, Mehrdad & Unnikrishnan, Avinash & Boyles, Stephen D., 2013. "An outer approximation algorithm for the robust shortest path problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 52-66.
    11. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    12. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    13. Yuli Zhang & Zuo-Jun Max Shen & Shiji Song, 2016. "Distributionally Robust Optimization of Two-Stage Lot-Sizing Problems," Production and Operations Management, Production and Operations Management Society, vol. 25(12), pages 2116-2131, December.
    14. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    15. Hall, Randolph W., 1983. "Travel outcome and performance: The effect of uncertainty on accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 17(4), pages 275-290, August.
    16. Anthony Chen & Zhong Zhou, 2009. "A Stochastic α-reliable Mean-excess Traffic Equilibrium Model with Probabilistic Travel Times and Perception Errors," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 117-145, Springer.
    17. Khani, Alireza & Boyles, Stephen D., 2015. "An exact algorithm for the mean–standard deviation shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 252-266.
    18. Wu, Xing, 2015. "Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 275-290.
    19. Yu Marco Nie & Xing Wu, 2009. "Reliable a Priori Shortest Path Problem with Limited Spatial and Temporal Dependencies," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 169-195, Springer.
    20. Pitu Mirchandani & Hossein Soroush, 1987. "Generalized Traffic Equilibrium with Probabilistic Travel Times and Perceptions," Transportation Science, INFORMS, vol. 21(3), pages 133-152, August.
    21. Zhang, Yuli & Shen, Zuo-Jun Max & Song, Shiji, 2016. "Parametric search for the bi-attribute concave shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 150-168.
    22. Chen, Bi Yu & Li, Qingquan & Lam, William H.K., 2016. "Finding the k reliable shortest paths under travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 189-203.
    23. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    24. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhuolin & You, Keyou & Song, Shiji & Zhang, Yuli, 2020. "Wasserstein distributionally robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 31-43.
    2. Liang Shen & Feiran Wang & Yueyuan Chen & Xinyi Lv & Zongliang Wen, 2022. "A Reliability-Based Stochastic Traffic Assignment Model for Signalized Traffic Network with Consideration of Link Travel Time Correlations," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    3. Zohreh Hosseini Nodeh & Ali Babapour Azar & Rashed Khanjani Shiraz & Salman Khodayifar & Panos M. Pardalos, 2020. "Joint chance constrained shortest path problem with Copula theory," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 110-140, July.
    4. Zhang, Dongqing & Wallace, Stein W. & Guo, Zhaoxia & Dong, Yucheng & Kaut, Michal, 2021. "On scenario construction for stochastic shortest path problems in real road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    5. Ruilin Pan & Qiong Wang & Zhenghong Li & Jianhua Cao & Yongjin Zhang, 2022. "Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs," Annals of Operations Research, Springer, vol. 310(1), pages 119-151, March.
    6. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    7. Elías Escobar-Gómez & J.L. Camas-Anzueto & Sabino Velázquez-Trujillo & Héctor Hernández-de-León & Rubén Grajales-Coutiño & Eduardo Chandomí-Castellanos & Héctor Guerra-Crespo, 2019. "A Linear Programming Model with Fuzzy Arc for Route Optimization in the Urban Road Network," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    8. Yuli Zhang & Zuo-Jun Max Shen & Shiji Song, 2018. "Exact Algorithms for Distributionally β -Robust Machine Scheduling with Uncertain Processing Times," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 662-676, November.
    9. Zhang, Yufeng & Khani, Alireza, 2019. "An algorithm for reliable shortest path problem with travel time correlations," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 92-113.
    10. Yong Wang & Yingying Yuan & Xiangyang Guan & Haizhong Wang & Yong Liu & Maozeng Xu, 2019. "Collaborative Mechanism for Pickup and Delivery Problems with Heterogeneous Vehicles under Time Windows," Sustainability, MDPI, vol. 11(12), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yufeng & Khani, Alireza, 2019. "An algorithm for reliable shortest path problem with travel time correlations," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 92-113.
    2. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    3. Chen, Bi Yu & Li, Qingquan & Lam, William H.K., 2016. "Finding the k reliable shortest paths under travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 189-203.
    4. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    5. A. Arun Prakash & Karthik K. Srinivasan, 2017. "Finding the Most Reliable Strategy on Stochastic and Time-Dependent Transportation Networks: A Hypergraph Based Formulation," Networks and Spatial Economics, Springer, vol. 17(3), pages 809-840, September.
    6. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    7. Zhang, Yu & Tang, Jiafu, 2018. "Itinerary planning with time budget for risk-averse travelers," European Journal of Operational Research, Elsevier, vol. 267(1), pages 288-303.
    8. Zhang, Yuli & Shen, Zuo-Jun Max & Song, Shiji, 2016. "Parametric search for the bi-attribute concave shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 150-168.
    9. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
    10. A. Arun Prakash & Karthik K. Srinivasan, 2018. "Pruning Algorithms to Determine Reliable Paths on Networks with Random and Correlated Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 80-101, January.
    11. Wu, Xing, 2015. "Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 275-290.
    12. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    13. Xiangfeng Ji & Xuegang (Jeff) Ban & Mengtian Li & Jian Zhang & Bin Ran, 2017. "Non-expected Route Choice Model under Risk on Stochastic Traffic Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 777-807, September.
    14. Khani, Alireza & Boyles, Stephen D., 2015. "An exact algorithm for the mean–standard deviation shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 252-266.
    15. Amirgholy, Mahyar & Gonzales, Eric J., 2017. "Efficient frontier of route choice for modeling the equilibrium under travel time variability with heterogeneous traveler preferences," Economics of Transportation, Elsevier, vol. 11, pages 1-14.
    16. Yang, Lixing & Zhang, Yan & Li, Shukai & Gao, Yuan, 2016. "A two-stage stochastic optimization model for the transfer activity choice in metro networks," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 271-297.
    17. Liu, Yang & Blandin, Sebastien & Samaranayake, Samitha, 2019. "Stochastic on-time arrival problem in transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 122-138.
    18. Nie, Yu (Marco), 2011. "Multi-class percentile user equilibrium with flow-dependent stochasticity," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1641-1659.
    19. Nie, Yu (Marco) & Wu, Xing & Dillenburg, John F. & Nelson, Peter C., 2012. "Reliable route guidance: A case study from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 403-419.
    20. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:104:y:2017:i:c:p:501-521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.