IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v310y2022i1d10.1007_s10479-021-04217-7.html
   My bibliography  Save this article

Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs

Author

Listed:
  • Ruilin Pan

    (Anhui University of Technology
    The Key Laboratory of Multidisciplinary Management and Control of Complex Systems, Department of Education Anhui Province)

  • Qiong Wang

    (Anhui University of Technology)

  • Zhenghong Li

    (Anhui University of Technology)

  • Jianhua Cao

    (Anhui University of Technology
    The Key Laboratory of Multidisciplinary Management and Control of Complex Systems, Department of Education Anhui Province)

  • Yongjin Zhang

    (Anhui University of Technology)

Abstract

Multi-position refining furnaces are a critical strategy for energy-intensive industries to meet its demands of fast-paced production. In most literature, however, they serve only as a buffer, holding up to at most two ladles to maintain the proper temperature of ladles. These studies do not take full advantage of them, nor do they study the production scheduling of energy-intensive enterprises with multi-position refining furnaces under time-of-use (TOU) tariffs. Therefore, this paper presents a steelmaking-continuous casting (SCC) scheduling problem with multi-position refining furnaces under TOU tariffs. We firstly develop a mixed integer nonlinear programming (MINLP) model with the goals of minimizing jobs completion time, machines idle time, and total electricity costs, which subjects to the double-position characteristics and other process constraints. Owing to the complexity between the time-slots of TOU tariffs and the processing cycles of jobs, we design an intermediate function to calculate objectives efficiently. Furthermore, a Lagrangian relaxation (LR) algorithm based on a subgradient algorithm is utilized to solve the proposed model, and an interior point algorithm is adopted to solve sub-problems obtained by job-level and batch-level decomposition, whose solution approximates optimality comparing to GUROBI solver. The computational results demonstrate that the solution of job-level decomposition algorithm approximates the optimal scheduling scheme in an acceptable time and is superior to that of GUROBI solver. In addition, double-position instance can find a better scheduling scheme than nondouble-position one.

Suggested Citation

  • Ruilin Pan & Qiong Wang & Zhenghong Li & Jianhua Cao & Yongjin Zhang, 2022. "Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs," Annals of Operations Research, Springer, vol. 310(1), pages 119-151, March.
  • Handle: RePEc:spr:annopr:v:310:y:2022:i:1:d:10.1007_s10479-021-04217-7
    DOI: 10.1007/s10479-021-04217-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04217-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04217-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    2. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    3. Navid Hashemian & Claver Diallo & Béla Vizvári, 2014. "Makespan minimization for parallel machines scheduling with multiple availability constraints," Annals of Operations Research, Springer, vol. 213(1), pages 173-186, February.
    4. Bellabdaoui, A. & Teghem, J., 2006. "A mixed-integer linear programming model for the continuous casting planning," International Journal of Production Economics, Elsevier, vol. 104(2), pages 260-270, December.
    5. Zhang, Yuli & Max Shen, Zuo-Jun & Song, Shiji, 2017. "Lagrangian relaxation for the reliable shortest path problem with correlated link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 501-521.
    6. Kan Fang & Nelson A. Uhan & Fu Zhao & John W. Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    7. Kan Fang & Nelson Uhan & Fu Zhao & John Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    8. Lixin Tang & Yanyan Zhang, 2011. "A new Lagrangian Relaxation Algorithm for scheduling dissimilar parallel machines with release dates," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(7), pages 1133-1141.
    9. Pranzo, Marco, 2004. "Batch scheduling in a two-machine flow shop with limited buffer and sequence independent setup times and removal times," European Journal of Operational Research, Elsevier, vol. 153(3), pages 581-592, March.
    10. Tianhua Jiang & Chao Zhang & Huiqi Zhu & Jiuchun Gu & Guanlong Deng, 2018. "Energy-Efficient Scheduling for a Job Shop Using an Improved Whale Optimization Algorithm," Mathematics, MDPI, vol. 6(11), pages 1-16, October.
    11. Chen, Haoxun & Luh, Peter B., 2003. "An alternative framework to Lagrangian relaxation approach for job shop scheduling," European Journal of Operational Research, Elsevier, vol. 149(3), pages 499-512, September.
    12. Tianhua Jiang & Chao Zhang & Huiqi Zhu & Guanlong Deng, 2018. "Energy-Efficient Scheduling for a Job Shop Using Grey Wolf Optimization Algorithm with Double-Searching Mode," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, October.
    13. Mao, Kun & Pan, Quan-ke & Pang, Xinfu & Chai, Tianyou, 2014. "A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process," European Journal of Operational Research, Elsevier, vol. 236(1), pages 51-60.
    14. W. Ackooij & I. Danti Lopez & A. Frangioni & F. Lacalandra & M. Tahanan, 2018. "Large-scale unit commitment under uncertainty: an updated literature survey," Annals of Operations Research, Springer, vol. 271(1), pages 11-85, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    2. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    3. Zhang, Hongbin & Yang, Yu & Wu, Feng, 2024. "Scheduling a set of jobs with convex piecewise linear cost functions on a single-batch-processing machine," Omega, Elsevier, vol. 122(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dayong Han & Qiuhua Tang & Zikai Zhang & Zixiang Li, 2020. "An Improved Migrating Birds Optimization Algorithm for a Hybrid Flow Shop Scheduling within Steel Plants," Mathematics, MDPI, vol. 8(10), pages 1-28, September.
    2. Mao, Kun & Pan, Quan-ke & Pang, Xinfu & Chai, Tianyou, 2014. "A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process," European Journal of Operational Research, Elsevier, vol. 236(1), pages 51-60.
    3. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    4. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    5. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    6. Shun Jia & Yang Yang & Shuyu Li & Shang Wang & Anbang Li & Wei Cai & Yang Liu & Jian Hao & Luoke Hu, 2024. "The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    7. Michal Penn & Tal Raviv, 2021. "Complexity and algorithms for min cost and max profit scheduling under time-of-use electricity tariffs," Journal of Scheduling, Springer, vol. 24(1), pages 83-102, February.
    8. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    9. Jules Raymond Kala & Didier Michael Kre & Armelle N’Guessan Gnassou & Jean Robert Kamdjoug Kala & Yves Melaine Akpablin Akpablin & Tiorna Coulibaly, 2022. "Assets management on electrical grid using Faster-RCNN," Annals of Operations Research, Springer, vol. 308(1), pages 307-320, January.
    10. Haitham Alsaif & Shobhit K. Patel & Naim Ben Ali & Ammar Armghan & Khaled Aliqab, 2023. "Numerical Simulation and Structure Optimization of Multilayer Metamaterial Plus-Shaped Solar Absorber Design Based on Graphene and SiO 2 Substrate for Renewable Energy Generation," Mathematics, MDPI, vol. 11(2), pages 1-13, January.
    11. Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
    12. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    13. Wu, Xueqi & Che, Ada, 2020. "Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search," Omega, Elsevier, vol. 94(C).
    14. Wu, Xueqi & Che, Ada, 2019. "A memetic differential evolution algorithm for energy-efficient parallel machine scheduling," Omega, Elsevier, vol. 82(C), pages 155-165.
    15. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    16. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    17. Aghelinejad, MohammadMohsen & Ouazene, Yassine & Yalaoui, Alice, 2019. "Complexity analysis of energy-efficient single machine scheduling problems," Operations Research Perspectives, Elsevier, vol. 6(C).
    18. Lin Chen & Nicole Megow & Roman Rischke & Leen Stougie & José Verschae, 2021. "Optimal algorithms for scheduling under time-of-use tariffs," Annals of Operations Research, Springer, vol. 304(1), pages 85-107, September.
    19. Liu, Ming & Yang, Xuenan & Chu, Feng & Zhang, Jiantong & Chu, Chengbin, 2020. "Energy-oriented bi-objective optimization for the tempered glass scheduling," Omega, Elsevier, vol. 90(C).
    20. Gaggero, Mauro & Paolucci, Massimo & Ronco, Roberto, 2023. "Exact and heuristic solution approaches for energy-efficient identical parallel machine scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 311(3), pages 845-866.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:310:y:2022:i:1:d:10.1007_s10479-021-04217-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.