IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8574892.html
   My bibliography  Save this article

Energy-Efficient Scheduling for a Job Shop Using Grey Wolf Optimization Algorithm with Double-Searching Mode

Author

Listed:
  • Tianhua Jiang
  • Chao Zhang
  • Huiqi Zhu
  • Guanlong Deng

Abstract

Workshop scheduling has mainly focused on the performances involving the production efficiency, such as times and quality, etc. In recent years, environmental metrics have attracted the attention of many researchers. In this study, an energy-efficient job shop scheduling problem is considered, and a grey wolf optimization algorithm with double-searching mode (DMGWO) is proposed with the objective of minimizing the total cost of energy-consumption and tardiness. Firstly, the algorithm starts with a discrete encoding mechanism, and then a heuristic algorithm and the random rule are employed to implement the population initialization. Secondly, a new framework with double-searching mode is developed for the GWO algorithm. In the proposed DMGWO algorithm, besides of the searching mode of the original GWO, a random seeking mode is added to enhance the global search ability. Furthermore, an adaptive selection operator of the two searching modes is also presented to coordinate the exploration and exploitation. In each searching mode, a discrete updating method of individuals is designed by considering the discrete characteristics of the scheduling solution, which can make the algorithm directly work in a discrete domain. In order to further improve the solution quality, a local search strategy is embedded into the algorithm. Finally, extensive simulations demonstrate the effectiveness of the proposed DMGWO algorithm for solving the energy-efficient job shop scheduling problem based on 43 benchmarks.

Suggested Citation

  • Tianhua Jiang & Chao Zhang & Huiqi Zhu & Guanlong Deng, 2018. "Energy-Efficient Scheduling for a Job Shop Using Grey Wolf Optimization Algorithm with Double-Searching Mode," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, October.
  • Handle: RePEc:hin:jnlmpe:8574892
    DOI: 10.1155/2018/8574892
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/8574892.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/8574892.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/8574892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    2. Haitham Alsaif & Shobhit K. Patel & Naim Ben Ali & Ammar Armghan & Khaled Aliqab, 2023. "Numerical Simulation and Structure Optimization of Multilayer Metamaterial Plus-Shaped Solar Absorber Design Based on Graphene and SiO 2 Substrate for Renewable Energy Generation," Mathematics, MDPI, vol. 11(2), pages 1-13, January.
    3. Lu Sun & Lin Lin & Haojie Li & Mitsuo Gen, 2019. "Cooperative Co-Evolution Algorithm with an MRF-Based Decomposition Strategy for Stochastic Flexible Job Shop Scheduling," Mathematics, MDPI, vol. 7(4), pages 1-20, March.
    4. Leilei Meng & Biao Zhang & Kaizhou Gao & Peng Duan, 2022. "An MILP Model for Energy-Conscious Flexible Job Shop Problem with Transportation and Sequence-Dependent Setup Times," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    5. Ahmet Kursad Turker & Adnan Aktepe & Ali Firat Inal & Olcay Ozge Ersoz & Gulesin Sena Das & Burak Birgoren, 2019. "A Decision Support System for Dynamic Job-Shop Scheduling Using Real-Time Data with Simulation," Mathematics, MDPI, vol. 7(3), pages 1-19, March.
    6. Dayong Han & Qiuhua Tang & Zikai Zhang & Zixiang Li, 2020. "An Improved Migrating Birds Optimization Algorithm for a Hybrid Flow Shop Scheduling within Steel Plants," Mathematics, MDPI, vol. 8(10), pages 1-28, September.
    7. Ruilin Pan & Qiong Wang & Zhenghong Li & Jianhua Cao & Yongjin Zhang, 2022. "Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs," Annals of Operations Research, Springer, vol. 310(1), pages 119-151, March.
    8. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    9. Hongli Yu & Yuelin Gao & Le Wang & Jiangtao Meng, 2020. "A Hybrid Particle Swarm Optimization Algorithm Enhanced with Nonlinear Inertial Weight and Gaussian Mutation for Job Shop Scheduling Problems," Mathematics, MDPI, vol. 8(8), pages 1-17, August.
    10. Fei Luan & Zongyan Cai & Shuqiang Wu & Tianhua Jiang & Fukang Li & Jia Yang, 2019. "Improved Whale Algorithm for Solving the Flexible Job Shop Scheduling Problem," Mathematics, MDPI, vol. 7(5), pages 1-14, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8574892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.