IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v41y2007i5p367-381.html
   My bibliography  Save this article

Household travel surveys: Where are we going?

Author

Listed:
  • Stopher, Peter R.
  • Greaves, Stephen P.

Abstract

In this paper, we commence by reviewing the recent history of household travel surveys. We note some of the problems that contemporary surveys are encountering throughout the world. We also review the data demands of current and emerging travel demand models, concluding that there are many new demands being placed on data, both in terms of the extent of the data required and the accuracy and completeness of the data. Noting that the standard method for conducting most household travel surveys is, and has been for some years, a diary, we briefly explore the evolution of the diary survey from the late 1970s to the present. In the next section of the paper, we explore a number of facets of potential future data collection. We include in this the use of GPS devices to measure travel, the potential of panel designs and some of the alternatives within panel designs, the development of continuous household travel surveys, especially in Australia, and the emerging capabilities in data fusion. Using some of these emerging methods for data collection and data simulation, we then propose a new paradigm for data collection that places the emphasis on a paid, national panel that is designed as a rotating, split panel, with the cross-sectional component conducted as a continuing survey. The basis of the panel data collection is proposed as GPS with demographic data, and the continuing national sample would also use GPS at its core. The potential to add in such specialised surveys as stated choice and process surveys is also noted as an advantage of the panel approach. We also explore briefly the notion that a special access panel or panels could be included as part of the design.

Suggested Citation

  • Stopher, Peter R. & Greaves, Stephen P., 2007. "Household travel surveys: Where are we going?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 367-381, June.
  • Handle: RePEc:eee:transa:v:41:y:2007:i:5:p:367-381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(06)00118-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    2. Jan Veldhuisen & Harry Timmermans & Loek Kapoen, 2000. "RAMBLAS: A Regional Planning Model Based on the Microsimulation of Daily Activity Travel Patterns," Environment and Planning A, , vol. 32(3), pages 427-443, March.
    3. Sean Doherty & Eric Miller, 2000. "A computerized household activity scheduling survey," Transportation, Springer, vol. 27(1), pages 75-97, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee-Gosselin, Martin & Miranda-Moreno, Luis F., 2009. "What is different about urban activities of those with access to ICTs? Some early evidence from Québec, Canada," Journal of Transport Geography, Elsevier, vol. 17(2), pages 104-114.
    2. Shaheen, Susan A. & Wright, John, 2001. "Research Approach and Early Findings," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8f8803dx, Institute of Transportation Studies, UC Berkeley.
    3. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    4. Xuan Liu & John M. Usher, 2016. "Modeling air passengers’ rescheduling strategies for airport service lines based on an empirical study with the aid of a virtual 3-D computer graphic environment," Public Transport, Springer, vol. 8(1), pages 57-84, March.
    5. Luis Miranda-Moreno & Martin Lee-Gosselin, 2008. "A week in the life of baby boomers: how do they see the spatial–temporal organization of their activities and travel?," Transportation, Springer, vol. 35(5), pages 629-653, August.
    6. Dujuan Yang & Harry Timmermans & Aloys Borgers, 2016. "The prevalence of context-dependent adjustment of activity-travel patterns in energy conservation strategies: results from a mixture-amount stated adaptation experiment," Transportation, Springer, vol. 43(1), pages 79-100, January.
    7. Gargi Chaudhuri & Keith C Clarke, 2015. "On the Spatiotemporal Dynamics of the Coupling between Land Use and Road Networks: Does Political History Matter?," Environment and Planning B, , vol. 42(1), pages 133-156, February.
    8. Jian Liu & Xiaosu Ma & Yi Zhu & Jing Li & Zong He & Sheng Ye, 2021. "Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    9. Templ, Matthias & Meindl, Bernhard & Kowarik, Alexander & Dupriez, Olivier, 2017. "Simulation of Synthetic Complex Data: The R Package simPop," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i10).
    10. Chen, Zhiwei & Li, Xiaopeng, 2021. "Unobserved heterogeneity in transportation equity analysis: Evidence from a bike-sharing system in southern Tampa," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    12. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    13. Zou, Tianqi & Aemmer, Zack & MacKenzie, Don & Laberteaux, Ken, 2022. "A framework for estimating commute accessibility and adoption of ridehailing services under functional improvements from vehicle automation," Journal of Transport Geography, Elsevier, vol. 102(C).
    14. Philip C. Cooley & Sarah M. Bartsch & Shawn T. Brown & William D. Wheaton & Diane K. Wagener & Bruce Y. Lee, 2016. "Weekends as social distancing and their effect on the spread of influenza," Computational and Mathematical Organization Theory, Springer, vol. 22(1), pages 71-87, March.
    15. Christopher L Burdett & Brian R Kraus & Sarah J Garza & Ryan S Miller & Kathe E Bjork, 2015. "Simulating the Distribution of Individual Livestock Farms and Their Populations in the United States: An Example Using Domestic Swine (Sus scrofa domesticus) Farms," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-21, November.
    16. Sheila Ferrer & Tomás Ruiz, 2017. "Comparison on travel scheduling between driving and walking trips by habitual car users," Transportation, Springer, vol. 44(1), pages 27-48, January.
    17. Sean F. Reardon & Lindsay Fox & Joseph Townsend, 2015. "Neighborhood Income Composition by Household Race and Income, 1990–2009," The ANNALS of the American Academy of Political and Social Science, , vol. 660(1), pages 78-97, July.
    18. He, Brian Y. & Zhou, Jinkai & Ma, Ziyi & Chow, Joseph Y.J. & Ozbay, Kaan, 2020. "Evaluation of city-scale built environment policies in New York City with an emerging-mobility-accessible synthetic population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 444-467.
    19. Ming Yi & Achla Marathe, 2013. "Policy Trap and Optimal Subsidization Policy under Limited Supply of Vaccines," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-9, July.
    20. Zuoxian Gan & Min Yang & Tao Feng & Harry Timmermans, 2020. "Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations," Transportation, Springer, vol. 47(1), pages 315-336, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:41:y:2007:i:5:p:367-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.