IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0067249.html
   My bibliography  Save this article

Policy Trap and Optimal Subsidization Policy under Limited Supply of Vaccines

Author

Listed:
  • Ming Yi
  • Achla Marathe

Abstract

We adopt a susceptible-infected-susceptible (SIS) model on a Barabási and Albert (BA) network to investigate the effects of different vaccine subsidization policies. The goal is to control the prevalence of the disease given a limited supply and voluntary uptake of vaccines. The results show a uniform subsidization policy is always harmful and increases the prevalence of the disease, because the lower degree individuals’ demand for vaccine crowds out the higher degree individuals’ demand. In the absence of an effective uniform policy, we explore a targeted subsidization policy which relies on a proxy variable instead of individuals’ connectivity. Findings show a poor proxy-based targeted program can still increase the disease prevalence and become a policy trap. The results are robust to general scale-free networks.

Suggested Citation

  • Ming Yi & Achla Marathe, 2013. "Policy Trap and Optimal Subsidization Policy under Limited Supply of Vaccines," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-9, July.
  • Handle: RePEc:plo:pone00:0067249
    DOI: 10.1371/journal.pone.0067249
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067249
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0067249&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0067249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    2. Jian Liu & Xiaosu Ma & Yi Zhu & Jing Li & Zong He & Sheng Ye, 2021. "Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    3. Templ, Matthias & Meindl, Bernhard & Kowarik, Alexander & Dupriez, Olivier, 2017. "Simulation of Synthetic Complex Data: The R Package simPop," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i10).
    4. Chen, Zhiwei & Li, Xiaopeng, 2021. "Unobserved heterogeneity in transportation equity analysis: Evidence from a bike-sharing system in southern Tampa," Journal of Transport Geography, Elsevier, vol. 91(C).
    5. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    6. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    7. Zou, Tianqi & Aemmer, Zack & MacKenzie, Don & Laberteaux, Ken, 2022. "A framework for estimating commute accessibility and adoption of ridehailing services under functional improvements from vehicle automation," Journal of Transport Geography, Elsevier, vol. 102(C).
    8. Philip C. Cooley & Sarah M. Bartsch & Shawn T. Brown & William D. Wheaton & Diane K. Wagener & Bruce Y. Lee, 2016. "Weekends as social distancing and their effect on the spread of influenza," Computational and Mathematical Organization Theory, Springer, vol. 22(1), pages 71-87, March.
    9. Christopher L Burdett & Brian R Kraus & Sarah J Garza & Ryan S Miller & Kathe E Bjork, 2015. "Simulating the Distribution of Individual Livestock Farms and Their Populations in the United States: An Example Using Domestic Swine (Sus scrofa domesticus) Farms," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-21, November.
    10. Sean F. Reardon & Lindsay Fox & Joseph Townsend, 2015. "Neighborhood Income Composition by Household Race and Income, 1990–2009," The ANNALS of the American Academy of Political and Social Science, , vol. 660(1), pages 78-97, July.
    11. He, Brian Y. & Zhou, Jinkai & Ma, Ziyi & Chow, Joseph Y.J. & Ozbay, Kaan, 2020. "Evaluation of city-scale built environment policies in New York City with an emerging-mobility-accessible synthetic population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 444-467.
    12. Lovelace, Robin & Ballas, Dimitris & Watson, Matt, 2014. "A spatial microsimulation approach for the analysis of commuter patterns: from individual to regional levels," Journal of Transport Geography, Elsevier, vol. 34(C), pages 282-296.
    13. Rich, Jeppe & Mulalic, Ismir, 2012. "Generating synthetic baseline populations from register data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 467-479.
    14. Kay, Andrew I. & Noland, Robert B. & Rodier, Caroline J., 2014. "Achieving reductions in greenhouse gases in the US road transportation sector," Energy Policy, Elsevier, vol. 69(C), pages 536-545.
    15. Waddell, Paul & Ulfarsson, Gudmundur F. & Franklin, Joel P. & Lobb, John, 2007. "Incorporating land use in metropolitan transportation planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 382-410, June.
    16. Ma, Lu & Srinivasan, Sivaramakrishnan, 2016. "An empirical assessment of factors affecting the accuracy of target-year synthetic populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 247-264.
    17. Matt Ruther & Galen Maclaurin & Stefan Leyk & Barbara Buttenfield & Nicholas Nagle, 2013. "Validation of spatially allocated small area estimates for 1880 Census demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(22), pages 579-616.
    18. Andrew Bwambale & Charisma F. Choudhury & Stephane Hess & Md. Shahadat Iqbal, 2021. "Getting the best of both worlds: a framework for combining disaggregate travel survey data and aggregate mobile phone data for trip generation modelling," Transportation, Springer, vol. 48(5), pages 2287-2314, October.
    19. Chen, Zhiwei & Guo, Yujie & Stuart, Amy L. & Zhang, Yu & Li, Xiaopeng, 2019. "Exploring the equity performance of bike-sharing systems with disaggregated data: A story of southern Tampa," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 529-545.
    20. Farooq, Bilal & Bierlaire, Michel & Hurtubia, Ricardo & Flötteröd, Gunnar, 2013. "Simulation based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 243-263.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0067249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.