IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v190y2024ics0965856424003239.html
   My bibliography  Save this article

Influence factors on travel mode preference of working residents living far away from downtown area on workdays: A hybrid method integrating random parameter logit model and Apriori algorithm

Author

Listed:
  • Sun, Zhiyuan
  • Wang, Duo
  • Wang, Jianyu
  • Han, Lu
  • Xing, Yuxuan
  • Lu, Huapu
  • Chen, Yanyan

Abstract

This study presents a detailed analysis on the characteristics of travel mode preference of working residents living far away from downtown area on workdays, using GPS-based activity travel diary data from Shangdi area (Beijing). A hybrid method integrating random parameter logit model with systematic heterogeneity (RPL-SH) and Apriori algorithm is put forward to explore the influence factors and interaction effects affecting travel mode preference. First, the RPL-SH model is established to explore significant factors, and capture the unobserved random heterogeneity and systematic heterogeneity due to individual characteristics on the travel mode preference. Then, these significant factors are used to generate association rules by Apriori algorithm to investigate statistical associations between the specific travel mode preference and these significant factors. Ten significant factors are found in the RPL-SH model, in which annual household income is normally distributed. The results of the Apriori algorithm indicate that some factors combined with other factors could significantly influence working residents’ travel mode preference. For example, the combination of lower annual household income and shorter distance between workplace and the nearest bus stop is highly associated with green travel mode preference. Moreover, the results show that the proposed hybrid method not only demonstrates the consistency of the results of the two methods, but also plays a complementary role in exploring more information on travel mode preference. This research hopes to give regulators a better understanding on how working residents living far away from downtown area choose their travel mode, so as to develop more effective and targeted measures for reducing private car use and alleviating workday traffic congestion.

Suggested Citation

  • Sun, Zhiyuan & Wang, Duo & Wang, Jianyu & Han, Lu & Xing, Yuxuan & Lu, Huapu & Chen, Yanyan, 2024. "Influence factors on travel mode preference of working residents living far away from downtown area on workdays: A hybrid method integrating random parameter logit model and Apriori algorithm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003239
    DOI: 10.1016/j.tra.2024.104275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424003239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Ding & Huapu Lu, 2017. "The interactions between online shopping and personal activity travel behavior: an analysis with a GPS-based activity travel diary," Transportation, Springer, vol. 44(2), pages 311-324, March.
    2. Elisabetta Cherchi & Cinzia Cirillo, 2014. "Understanding variability, habit and the effect of long period activity plan in modal choices: a day to day, week to week analysis on panel data," Transportation, Springer, vol. 41(6), pages 1245-1262, November.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, July.
    4. Sungyop Kim & Gudmundur Ulfarsson, 2008. "Curbing automobile use for sustainable transportation: analysis of mode choice on short home-based trips," Transportation, Springer, vol. 35(6), pages 723-737, November.
    5. Ozbilen, Basar & Wang, Kailai & Akar, Gulsah, 2021. "Revisiting the impacts of virtual mobility on travel behavior: An exploration of daily travel time expenditures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 49-62.
    6. Geng, Kexin & Wang, Yacan & Cherchi, Elisabetta & Guarda, Pablo, 2023. "Commuter departure time choice behavior under congestion charge: Analysis based on cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    7. Cai, Yangqian & Moreno, Ana Tsui, 2024. "Identifying non-universal heterogeneity of preferences of leisure cyclists for rural highway environments: A latent-class model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    8. Diana Kusumastuti & Els Hannes & Davy Janssens & Geert Wets & Benedict Dellaert, 2010. "Scrutinizing individuals’ leisure-shopping travel decisions to appraise activity-based models of travel demand," Transportation, Springer, vol. 37(4), pages 647-661, July.
    9. Ron Dalumpines & Darren M. Scott, 2017. "Making mode detection transferable: extracting activity and travel episodes from GPS data using the multinomial logit model and Python," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(5), pages 523-539, July.
    10. Lars Böcker & Patrick Amen & Marco Helbich, 2017. "Elderly travel frequencies and transport mode choices in Greater Rotterdam, the Netherlands," Transportation, Springer, vol. 44(4), pages 831-852, July.
    11. Khan, Mobashwir & M. Kockelman, Kara & Xiong, Xiaoxia, 2014. "Models for anticipating non-motorized travel choices, and the role of the built environment," Transport Policy, Elsevier, vol. 35(C), pages 117-126.
    12. Zidan Mao & Dick Ettema & Martin Dijst, 2018. "Analysis of travel time and mode choice shift for non-work stops in commuting: case study of Beijing, China," Transportation, Springer, vol. 45(3), pages 751-766, May.
    13. Zheng Zhu & Xiqun Chen & Chenfeng Xiong & Lei Zhang, 2018. "A mixed Bayesian network for two-dimensional decision modeling of departure time and mode choice," Transportation, Springer, vol. 45(5), pages 1499-1522, September.
    14. Muhammad Ibrahim, 2003. "Car ownership and attitudes towards transport modes for shopping purposes in Singapore," Transportation, Springer, vol. 30(4), pages 435-457, November.
    15. Xuemei Fu & Zhicai Juan, 2017. "An integrated framework to jointly model decisions of activity time allocation and work-related travel," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(6), pages 689-705, August.
    16. Ardeshiri, Ali & Vij, Akshay, 2019. "Lifestyles, residential location, and transport mode use: A hierarchical latent class choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 342-359.
    17. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chunjiao Dong, 2021. "Exploring the effects of the built environment on commuting mode choice in neighborhoods near public transit stations: evidence from China," Transportation Planning and Technology, Taylor & Francis Journals, vol. 44(1), pages 111-127, January.
    18. Poudel, Niranjan & Singleton, Patrick A., 2022. "Preferences for roundabout attributes among US bicyclists: A discrete choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 316-329.
    19. Andrew Clark & Darren Scott & Nikolaos Yiannakoulias, 2014. "Examining the relationship between active travel, weather, and the built environment: a multilevel approach using a GPS-enhanced dataset," Transportation, Springer, vol. 41(2), pages 325-338, March.
    20. Ye, Xin & Pendyala, Ram M. & Gottardi, Giovanni, 2007. "An exploration of the relationship between mode choice and complexity of trip chaining patterns," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 96-113, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sottile, Eleonora & Tuveri, Giovanni & Piras, Francesco & Meloni, Italo, 2022. "Modelling commuting tours versus non-commuting tours for university students. A panel data analysis from different contexts," Transport Policy, Elsevier, vol. 118(C), pages 56-67.
    2. Zannat, Khatun E. & Choudhury, Charisma F. & Hess, Stephane, 2024. "Modelling time-of-travel preferences capturing correlations between departure times and activity durations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    3. Kazagli, Evanthia & de Lapparent, Matthieu, 2023. "A discrete choice modeling framework of heterogenous decision rules accounting for non-trading behavior," Journal of choice modelling, Elsevier, vol. 48(C).
    4. Theo A. Arentze & Benedict G. C. Dellaert & Caspar G. Chorus, 2015. "Incorporating Mental Representations in Discrete Choice Models of Travel Behavior: Modeling Approach and Empirical Application," Transportation Science, INFORMS, vol. 49(3), pages 577-590, August.
    5. Wan, Li & Tang, Junqing & Wang, Lihua & Schooling, Jennifer, 2021. "Understanding non-commuting travel demand of car commuters – Insights from ANPR trip chain data in Cambridge," Transport Policy, Elsevier, vol. 106(C), pages 76-87.
    6. Yang, Yongjiang & Sasaki, Kuniaki & Cheng, Long & Tao, Sui, 2022. "Does the built environment matter for active travel among older adults: Insights from Chiba City, Japan," Journal of Transport Geography, Elsevier, vol. 101(C).
    7. Kunbo Shi & Long Cheng & Jonas De Vos & Yongchun Yang & Wanpeng Cao & Frank Witlox, 2021. "How does purchasing intangible services online influence the travel to consume these services? A focus on a Chinese context," Transportation, Springer, vol. 48(5), pages 2605-2625, October.
    8. Wang, Qing & Zhao, Wenjing & Ma, Shoufeng & Schonfeld, Paul M. & Zheng, Yue & Xue, Dabin, 2023. "Effects of a price incentive policy on urban rail transit passengers: A case study in Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    9. Li, Shengxiao (Alex), 2023. "Revisiting the relationship between information and communication technologies and travel behavior: An investigation of older Americans," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    10. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    11. Harsh Shah & Andre L. Carrel & Huyen T. K. Le, 2024. "Impacts of teleworking and online shopping on travel: a tour-based analysis," Transportation, Springer, vol. 51(1), pages 99-127, February.
    12. Joseph F. Wyer, 2018. "Urban Transportation Mode Choice And Trip Complexity: Bicyclists Stick To Their Gears," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1777-1787, July.
    13. González, Rosa Marina & Marrero, Ángel Simón & Cherchi, Elisabetta, 2017. "Testing for inertia effect when a new tram is implemented," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 150-159.
    14. Straubinger, Anna & de Groot, Henri L.F. & Verhoef, Erik T., 2023. "E-commerce, delivery drones and their impact on cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    15. Yang, Yuan & Wang, Can & Liu, Wenling & Zhou, Peng, 2018. "Understanding the determinants of travel mode choice of residents and its carbon mitigation potential," Energy Policy, Elsevier, vol. 115(C), pages 486-493.
    16. Shenhao Wang & Qingyi Wang & Jinhua Zhao, 2019. "Multitask Learning Deep Neural Networks to Combine Revealed and Stated Preference Data," Papers 1901.00227, arXiv.org, revised Aug 2019.
    17. Liu, Jixiang & Wang, Bo & Xiao, Longzhu, 2021. "Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach," Journal of Transport Geography, Elsevier, vol. 92(C).
    18. Ardeshiri, Ali & Safarighouzhdi, Farshid & Hossein Rashidi, Taha, 2021. "Measuring willingness to pay for shared parking," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 186-202.
    19. Lu, Ying & Prato, Carlo G. & Sipe, Neil & Kimpton, Anthony & Corcoran, Jonathan, 2022. "The role of household modality style in first and last mile travel mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 95-109.
    20. Jiajia Zhang & Tao Feng & Harry Timmermans & Zhengkui Lin, 2023. "Improved imputation of rule sets in class association rule modeling: application to transportation mode choice," Transportation, Springer, vol. 50(1), pages 63-106, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.