IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v190y2024ics0965856424003185.html
   My bibliography  Save this article

Con-Accessibility: Logit-based catchment area modeling for strategic airport system planning

Author

Listed:
  • Birolini, Sebastian
  • Avogadro, Nicolò
  • Malighetti, Paolo
  • Paleari, Stefano

Abstract

National airport system plans serve as the primary programmatic documents employed by policy-makers to outline the roles of different airports and devise strategies for their coordinated and integrated development, encompassing economic, environmental, and social perspectives. This paper proposes a modeling framework to estimate the strength of each airport’s influence and contribution to the surrounding territories, providing methodological foundation for assessing airport demand and delineating the scope of airport interactions. We propose a novel origin-based nested logit model of airport demand based on a comprehensive utility function—denoted as con-accessibility—integrating advanced metrics of ground accessibility and airport connectivity. To address the lack of extensive pairwise municipality–airport data, we cast the estimation problem as a nonlinear constrained least-squares optimization problem, solved via a differential evolution algorithm. The framework’s applicability and insights are demonstrated in a real-world case study of the latest Italian national airport system plan. We highlight the model’s capability in addressing three key policy questions: (i) characterizing airport catchments toward investigating the degree of overlap and airport interactions in serving contended areas; (ii) systematically quantifying the overall level of con-accessibility in any region to assess deficits or surpluses and pinpoint areas for strategic interventions; (iii) supporting the assessment and prioritization of various initiatives, including the upgrade of ground access networks, the expansion of airport supply, and the establishment of new airport facilities.

Suggested Citation

  • Birolini, Sebastian & Avogadro, Nicolò & Malighetti, Paolo & Paleari, Stefano, 2024. "Con-Accessibility: Logit-based catchment area modeling for strategic airport system planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003185
    DOI: 10.1016/j.tra.2024.104270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424003185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mueller, Falko, 2021. "Accessibility for money? An evaluation of subsidized air transport services in Europe and the United States," Transport Policy, Elsevier, vol. 106(C), pages 153-164.
    2. Adler, Nicole & Brudner, Amir & Gallotti, Riccardo & Privitera, Filippo & Ramasco, José J., 2022. "Does big data help answer big questions? The case of airport catchment areas & competition," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 444-467.
    3. Lieshout, Rogier & Malighetti, Paolo & Redondi, Renato & Burghouwt, Guillaume, 2016. "The competitive landscape of air transport in Europe," Journal of Transport Geography, Elsevier, vol. 50(C), pages 68-82.
    4. de Luca, Stefano, 2012. "Modelling airport choice behaviour for direct flights, connecting flights and different travel plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 148-163.
    5. Psaraki, Voula & Abacoumkin, Costas, 2002. "Access mode choice for relocated airports: the new Athens International Airport," Journal of Air Transport Management, Elsevier, vol. 8(2), pages 89-98.
    6. Zaidan, Esmat & Abulibdeh, Ammar, 2018. "Modeling ground access mode choice behavior for Hamad International Airport in the 2022 FIFA World Cup city, Doha, Qatar," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 32-45.
    7. Luis Cadarso & Vikrant Vaze & Cynthia Barnhart & Ángel Marín, 2017. "Integrated Airline Scheduling: Considering Competition Effects and the Entry of the High Speed Rail," Transportation Science, INFORMS, vol. 51(1), pages 132-154, February.
    8. Danesi, Antonio, 2006. "Measuring airline hub timetable co-ordination and connectivity: definition of a new index and application to a sample of European hubs," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 34, pages 54-74.
    9. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2003. "Access to and competition between airports: a case study for the San Francisco Bay area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 71-83, January.
    10. Xiaoqian Sun & Sebastian Wandelt & Mark Hansen, 2020. "Airport Road Access at Planet Scale using Population Grid and Openstreetmap," Networks and Spatial Economics, Springer, vol. 20(1), pages 273-299, March.
    11. Burghouwt, Guillaume & de Wit, Jaap, 2005. "Temporal configurations of European airline networks," Journal of Air Transport Management, Elsevier, vol. 11(3), pages 185-198.
    12. Nicole Adler, 2005. "Hub-Spoke Network Choice Under Competition with an Application to Western Europe," Transportation Science, INFORMS, vol. 39(1), pages 58-72, February.
    13. Zhou, Heng & Norman, Richard & Xia, Jianhong(Cecilia) & Hughes, Brett & Kelobonye, Keone & Nikolova, Gabi & Falkmer, Torbjorn, 2020. "Analysing travel mode and airline choice using latent class modelling: A case study in Western Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 187-205.
    14. Dimitris Bertsimas & Julia Yan, 2018. "From Physical Properties of Transportation Flows to Demand Estimation: An Optimization Approach," Transportation Science, INFORMS, vol. 52(4), pages 1002-1011, August.
    15. David L. Huff, 1963. "A Probabilistic Analysis of Shopping Center Trade Areas," Land Economics, University of Wisconsin Press, vol. 39(1), pages 81-90.
    16. Hess, Stephane & Polak, John W., 2005. "Mixed logit modelling of airport choice in multi-airport regions," Journal of Air Transport Management, Elsevier, vol. 11(2), pages 59-68.
    17. Sun, Xiaoqian & Wandelt, Sebastian & Hansen, Mark & Li, Ang, 2017. "Multiple airport regions based on inter-airport temporal distances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 84-98.
    18. Bieger, Thomas & Wittmer, Andreas, 2006. "Air transport and tourism—Perspectives and challenges for destinations, airlines and governments," Journal of Air Transport Management, Elsevier, vol. 12(1), pages 40-46.
    19. Wei, Wenbin & Hansen, Mark, 2006. "An aggregate demand model for air passenger traffic in the hub-and-spoke network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 841-851, December.
    20. Dennis, Nigel, 1994. "Scheduling strategies for airline hub operations," Journal of Air Transport Management, Elsevier, vol. 1(3), pages 131-144.
    21. Rugg, Donald, 1973. "The Choice of Journey Destination: A Theoretical and Empirical Analysis," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 64-72, February.
    22. Brownstone, David & Small, Kenneth A, 1989. "Efficient Estimation of Nested Logit Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 67-74, January.
    23. Birolini, Sebastian & Malighetti, Paolo & Redondi, Renato & Deforza, Paolo, 2019. "Access mode choice to low-cost airports: Evaluation of new direct rail services at Milan-Bergamo airport," Transport Policy, Elsevier, vol. 73(C), pages 113-124.
    24. Hsiao, Chieh-Yu & Hansen, Mark, 2011. "A passenger demand model for air transportation in a hub-and-spoke network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1112-1125.
    25. Kinene, Alan & Birolini, Sebastian, 2024. "Optimization of subsidized air transport networks using electric aircraft," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    26. Guillaume Burghouwt & Renato Redondi, 2013. "Connectivity in Air Transport Networks: An Assessment of Models and Applications," Journal of Transport Economics and Policy, University of Bath, vol. 47(1), pages 35-53, January.
    27. de Jong, Gerard & Daly, Andrew & Pieters, Marits & van der Hoorn, Toon, 2007. "The logsum as an evaluation measure: Review of the literature and new results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 874-889, November.
    28. Lieshout, Rogier, 2012. "Measuring the size of an airport’s catchment area," Journal of Transport Geography, Elsevier, vol. 25(C), pages 27-34.
    29. Yirgu, Kaleab Woldeyohannes & Kim, Amy M., 2024. "Airport choices and resulting catchments in the U.S. Midwest," Journal of Transport Geography, Elsevier, vol. 114(C).
    30. Hansen, Mark, 1990. "Airline competition in a hub-dominated environment: An application of noncooperative game theory," Transportation Research Part B: Methodological, Elsevier, vol. 24(1), pages 27-43, February.
    31. Avogadro, Nicolò & Birolini, Sebastian & Redondi, Renato & Deforza, Paolo, 2024. "Assessing airport ground access interventions: An integrated approach combining mode choice modeling and microscopic traffic simulation," Transport Policy, Elsevier, vol. 148(C), pages 154-167.
    32. Bergantino, Angela Stefania & Capurso, Mauro & Hess, Stephane, 2020. "Modelling regional accessibility to airports using discrete choice models: An application to a system of regional airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 855-871.
    33. Birolini, Sebastian & Cattaneo, Mattia & Malighetti, Paolo & Morlotti, Chiara, 2020. "Integrated origin-based demand modeling for air transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    34. Teixeira, Filipe Marques & Derudder, Ben, 2021. "Spatio-temporal dynamics in airport catchment areas: The case of the New York Multi Airport Region," Journal of Transport Geography, Elsevier, vol. 90(C).
    35. Li, Tao & Wan, Yan, 2019. "Estimating the geographic distribution of originating air travel demand using a bi-level optimization model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 267-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kinene, Alan & Birolini, Sebastian, 2024. "Optimization of subsidized air transport networks using electric aircraft," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kinene, Alan & Birolini, Sebastian, 2024. "Optimization of subsidized air transport networks using electric aircraft," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    2. Zeigler, Patrick & Pagliari, Romano & Suau-Sanchez, Pere & Malighetti, Paolo & Redondi, Renato, 2017. "Low-cost carrier entry at small European airports: Low-cost carrier effects on network connectivity and self-transfer potential," Journal of Transport Geography, Elsevier, vol. 60(C), pages 68-79.
    3. Birolini, Sebastian & Cattaneo, Mattia & Malighetti, Paolo & Morlotti, Chiara, 2020. "Integrated origin-based demand modeling for air transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Wang, Yu-Chen & Wong, Jinn-Tsai, 2019. "Exploring air network formation and development with a two-part model," Journal of Transport Geography, Elsevier, vol. 75(C), pages 122-131.
    5. Birolini, Sebastian & Antunes, António Pais & Cattaneo, Mattia & Malighetti, Paolo & Paleari, Stefano, 2021. "Integrated flight scheduling and fleet assignment with improved supply-demand interactions," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 162-180.
    6. Teixeira, Filipe Marques & Derudder, Ben, 2021. "Spatio-temporal dynamics in airport catchment areas: The case of the New York Multi Airport Region," Journal of Transport Geography, Elsevier, vol. 90(C).
    7. Allroggen, Florian & Wittman, Michael D. & Malina, Robert, 2015. "How air transport connects the world – A new metric of air connectivity and its evolution between 1990 and 2012," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 184-201.
    8. Choi, Jong Hae & Wang, Kun & Xia, Wenyi & Zhang, Anming, 2019. "Determining factors of air passengers’ transfer airport choice in the Southeast Asia – North America market: Managerial and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 203-216.
    9. Qi Zhang & Bo Wang & Desheng Xue, 2022. "The Hub Competition in Delivering Air Connectivity between China and Oceania," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    10. Hsiao, Chieh-Yu & Hansen, Mark, 2011. "A passenger demand model for air transportation in a hub-and-spoke network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1112-1125.
    11. Yirgu, Kaleab Woldeyohannes & Kim, Amy M., 2024. "Airport choices and resulting catchments in the U.S. Midwest," Journal of Transport Geography, Elsevier, vol. 114(C).
    12. Birolini, Sebastian & Jacquillat, Alexandre & Cattaneo, Mattia & Antunes, António Pais, 2021. "Airline Network Planning: Mixed-integer non-convex optimization with demand–supply interactions," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 100-124.
    13. Redondi, Renato & Birolini, Sebastian & Morlotti, Chiara & Paleari, Stefano, 2021. "Connectivity measures and passengers’ behavior: Comparing conventional connectivity models to predict itinerary market shares," Journal of Air Transport Management, Elsevier, vol. 90(C).
    14. Xu, Yifan & Adler, Nicole & Wandelt, Sebastian & Sun, Xiaoqian, 2024. "Competitive integrated airline schedule design and fleet assignment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 32-50.
    15. Morton, Craig & Mattioli, Giulio, 2023. "Competition in Multi-Airport Regions: Measuring airport catchments through spatial interaction models," Journal of Air Transport Management, Elsevier, vol. 112(C).
    16. Cordera, Rubén & Luigi dell’Olio, & Sipone, Silvia & Moura, José Luis, 2024. "Modeling airport choice for a multi-airport area using a random parameter logit model," Research in Transportation Economics, Elsevier, vol. 104(C).
    17. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor, 2016. "Measuring the potential for self-connectivity in global air transport markets: Implications for airports and airlines," Journal of Transport Geography, Elsevier, vol. 57(C), pages 70-82.
    18. Sun, Xiaoqian & Zheng, Changhong & Chen, Xinyue & Wandelt, Sebastian, 2024. "Multiple airport regions: A review of concepts, insights and challenges," Journal of Transport Geography, Elsevier, vol. 120(C).
    19. Avogadro, Nicolò & Birolini, Sebastian & Redondi, Renato & Deforza, Paolo, 2024. "Assessing airport ground access interventions: An integrated approach combining mode choice modeling and microscopic traffic simulation," Transport Policy, Elsevier, vol. 148(C), pages 154-167.
    20. Lenaerts, Bert & Allroggen, Florian & Malina, Robert, 2021. "The economic impact of aviation: A review on the role of market access," Journal of Air Transport Management, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.