IDEAS home Printed from https://ideas.repec.org/a/sot/journl/y2006i34p54-74.html
   My bibliography  Save this article

Measuring airline hub timetable co-ordination and connectivity: definition of a new index and application to a sample of European hubs

Author

Listed:
  • Danesi, Antonio

Abstract

In this paper a new index for measuring the timetable co-ordination of an airline hub is proposed, with application to a sample of European hubs. This index is both quite accurate and easy to use, so that it may prove a useful schedule analysis tool for airline managers. In section 1 of this paper, the definition of ‘wave-system structure’ and ‘ideal wave’ is given. In section 2 the problem of measuring hub connectivity and hub timetable co-ordination is discussed. Then, both the so-called ‘weighted indirect connection number’, which is an index for measuring hub connectivity, and the ‘connectivity ratio’, which is an index for measuring hub timetable co-ordination, are described, in section 3 and 4 respectively. In section 5, a new index for measuring hub timetable co-ordination is illustrated: the ‘weighted connectivity ratio’. Some examples of hub timetable co-ordination measures performed with the new index are reported in section 6.

Suggested Citation

  • Danesi, Antonio, 2006. "Measuring airline hub timetable co-ordination and connectivity: definition of a new index and application to a sample of European hubs," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 34, pages 54-74.
  • Handle: RePEc:sot:journl:y:2006:i:34:p:54-74
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10077/5929
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rietveld, Piet & Brons, Martijn, 2001. "Quality of hub-and-spoke networks; the effects of timetable co-ordination on waiting time and rescheduling time," Journal of Air Transport Management, Elsevier, vol. 7(4), pages 241-249.
    2. Veldhuis, Jan, 1997. "The competitive position of airline networks," Journal of Air Transport Management, Elsevier, vol. 3(4), pages 181-188.
    3. Kenneth Button & Roger R. Stough, 2000. "Air Transport Networks," Books, Edward Elgar Publishing, number 2148.
    4. Button, Kenneth, 2002. "Debunking some common myths about airport hubs," Journal of Air Transport Management, Elsevier, vol. 8(3), pages 177-188.
    5. Dennis, Nigel, 1994. "Scheduling strategies for airline hub operations," Journal of Air Transport Management, Elsevier, vol. 1(3), pages 131-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Jen-Jia & Fu, Chin-Yao, 2014. "The opening of direct flights across the Taiwan Strait: the impact on the global role of Taiwan’s international airport," Journal of Transport Geography, Elsevier, vol. 39(C), pages 179-186.
    2. Zeigler, Patrick & Pagliari, Romano & Suau-Sanchez, Pere & Malighetti, Paolo & Redondi, Renato, 2017. "Low-cost carrier entry at small European airports: Low-cost carrier effects on network connectivity and self-transfer potential," Journal of Transport Geography, Elsevier, vol. 60(C), pages 68-79.
    3. Redondi, Renato & Birolini, Sebastian & Morlotti, Chiara & Paleari, Stefano, 2021. "Connectivity measures and passengers’ behavior: Comparing conventional connectivity models to predict itinerary market shares," Journal of Air Transport Management, Elsevier, vol. 90(C).
    4. Wang, Yu-Chen & Wong, Jinn-Tsai, 2019. "Exploring air network formation and development with a two-part model," Journal of Transport Geography, Elsevier, vol. 75(C), pages 122-131.
    5. Maertens, Sven & Grimme, Wolfgang & Jung, Martin, 2014. "An economic–geographic assessment of the potential for a new air transport hub in post-Gaddafi Libya," Journal of Transport Geography, Elsevier, vol. 38(C), pages 1-12.
    6. Boonekamp, Thijs & Burghouwt, Guillaume, 2017. "Measuring connectivity in the air freight industry," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 81-94.
    7. Lenaerts, Bert & Allroggen, Florian & Malina, Robert, 2021. "The economic impact of aviation: A review on the role of market access," Journal of Air Transport Management, Elsevier, vol. 91(C).
    8. Jiang, Yonglei & Lu, Jing & Feng, Tao & Yang, Zhongzhen, 2020. "Determinants of wave-system structures of network airlines at hub airports," Journal of Air Transport Management, Elsevier, vol. 88(C).
    9. Logothetis, Michail & Miyoshi, Chikage, 2018. "Network performance and competitive impact of the single hub – A case study on Turkish Airlines and Emirates," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 215-223.
    10. Qi Zhang & Bo Wang & Desheng Xue, 2022. "The Hub Competition in Delivering Air Connectivity between China and Oceania," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    11. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor, 2015. "Regulatory airport classification in the US: The role of international markets," Transport Policy, Elsevier, vol. 37(C), pages 157-166.
    12. O’Connell, John F. & Bueno, Oriol Escofet, 2018. "A study into the hub performance Emirates, Etihad Airways and Qatar Airways and their competitive position against the major European hubbing airlines," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 257-268.
    13. Li, Wenkan Ken & Miyoshi, Chikage & Pagliari, Romano, 2012. "Dual-hub network connectivity: An analysis of all Nippon Airways’ use of Tokyo’s Haneda and Narita airports," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 12-16.
    14. Seredyński, Adam & Rothlauf, Franz & Grosche, Tobias, 2014. "An airline connection builder using maximum connection lag with greedy parameter selection," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 120-128.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere & Voltes-Dorta, Augusto, 2013. "Classifying airports according to their hub dimensions: an application to the US domestic network," Journal of Transport Geography, Elsevier, vol. 33(C), pages 188-195.
    2. Suau-Sanchez, Pere & Burghouwt, Guillaume, 2011. "The geography of the Spanish airport system: spatial concentration and deconcentration patterns in seat capacity distribution, 2001–2008," Journal of Transport Geography, Elsevier, vol. 19(2), pages 244-254.
    3. O’Connell, John F. & Bueno, Oriol Escofet, 2018. "A study into the hub performance Emirates, Etihad Airways and Qatar Airways and their competitive position against the major European hubbing airlines," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 257-268.
    4. Redondi, Renato & Birolini, Sebastian & Morlotti, Chiara & Paleari, Stefano, 2021. "Connectivity measures and passengers’ behavior: Comparing conventional connectivity models to predict itinerary market shares," Journal of Air Transport Management, Elsevier, vol. 90(C).
    5. Lenaerts, Bert & Allroggen, Florian & Malina, Robert, 2021. "The economic impact of aviation: A review on the role of market access," Journal of Air Transport Management, Elsevier, vol. 91(C).
    6. Sismanidou, Athina & Tarradellas, Joan & Bel, Germà & Fageda, Xavier, 2013. "Estimating potential long-haul air passenger traffic in national networks containing two or more dominant cities," Journal of Transport Geography, Elsevier, vol. 26(C), pages 108-116.
    7. Logothetis, Michail & Miyoshi, Chikage, 2018. "Network performance and competitive impact of the single hub – A case study on Turkish Airlines and Emirates," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 215-223.
    8. Seabra, Fernando & Valente, Amir Mattar & Silva, Leandro R. & Assis, Rafaella & Acordi, Carla & Marcon, Aline Filéti & Bauer, Martina Matte, 2020. "Determinants of Brazilian international flights: The role of hub-and-spoke and infrastructure variables," Journal of Air Transport Management, Elsevier, vol. 89(C).
    9. Castillo-Manzano, José I. & López-Valpuesta, Lourdes & Pedregal, Diego J., 2012. "What role will hubs play in the LCC point-to-point connections era? The Spanish experience," Journal of Transport Geography, Elsevier, vol. 24(C), pages 262-270.
    10. Dennis, Nigel, 2000. "Scheduling issues and network strategies for international airline alliances," Journal of Air Transport Management, Elsevier, vol. 6(2), pages 75-85.
    11. Burghouwt, Guillaume & de Wit, Jaap, 2005. "Temporal configurations of European airline networks," Journal of Air Transport Management, Elsevier, vol. 11(3), pages 185-198.
    12. David West & Scott Dellana, 2016. "Linking service structural design to service profitability: a U.S. airline industry study," Operations Management Research, Springer, vol. 9(1), pages 22-34, June.
    13. Zhang, Shengrun & Zheng, Hailong & Chen, Yuting & Witlox, Frank, 2020. "Factors influencing the hub connectivity of Beijing Capital Airport in its international markets," Journal of Air Transport Management, Elsevier, vol. 88(C).
    14. Zeigler, Patrick & Pagliari, Romano & Suau-Sanchez, Pere & Malighetti, Paolo & Redondi, Renato, 2017. "Low-cost carrier entry at small European airports: Low-cost carrier effects on network connectivity and self-transfer potential," Journal of Transport Geography, Elsevier, vol. 60(C), pages 68-79.
    15. Lieshout, Rogier & Matsumoto, Hidenobu, 2012. "New international services and the competitiveness of Tokyo International Airport," Journal of Transport Geography, Elsevier, vol. 22(C), pages 53-64.
    16. Juan Martín & Augusto Voltes-Dorta, 2008. "Theoretical Evidence of Existing Pitfalls in Measuring Hubbing Practices in Airline Networks," Networks and Spatial Economics, Springer, vol. 8(2), pages 161-181, September.
    17. Boonekamp, Thijs & Burghouwt, Guillaume, 2017. "Measuring connectivity in the air freight industry," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 81-94.
    18. Renato Redondi & Paolo Malighetti & Stefano Paleari, 2011. "New Routes and Airport Connectivity," Networks and Spatial Economics, Springer, vol. 11(4), pages 713-725, December.
    19. Karima Kourtit, 2017. "Effective Clusters as Territorial Performance Engines in a Regional Development Strategy - A Triple-Layer DEA Assessment of the Aviation Valley in Poland," REGION, European Regional Science Association, vol. 4, pages 39-63.
    20. Chang, Yu-Chun & Lee, Wei-Hao & Hsu, Chia-Jui, 2020. "Identifying competitive position for ten Asian aviation hubs," Transport Policy, Elsevier, vol. 87(C), pages 51-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sot:journl:y:2006:i:34:p:54-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Romeo Danielis (email available below). General contact details of provider: https://edirc.repec.org/data/xxxxxxx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.