IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v173y2023ics0965856423001064.html
   My bibliography  Save this article

Resilience towarded Digital Twins to improve the adaptability of transportation systems

Author

Listed:
  • Feng, Hailin
  • Lv, Haibin
  • Lv, Zhihan

Abstract

This work aims to investigate the role of the resilience of Digital Twins on the applicability of the transportation system. A literature study is conducted to review the current status of research on transportation systems and Digital Twins. It is found that the current research on Digital Twins technology has achieved different degrees of success in different aspects of transportation systems. Yet, the system performance of Digital Twins has to be optimized. First, the application of Digital Twins in intelligent transportation systems is analyzed. Then, how the changes in traveler behavior patterns reflect the extent to which the traffic network is affected by uncertain events is analyzed from the traveler's perspective. Finally, an Internet of Vehicles (IoV) system based on Digital Twins and blockchain is established to solve the data redundancy and high computational volume problems of in-vehicle data sharing common in the IoV system. Moreover, the performance of the twin system is optimized by proposing a multi-intelligence body algorithm based on local perception, and a case validation is performed. The results demonstrate that the adaptability of the transportation system to uncertain events and its response and recovery measures taken are reflected to some extent in the traveler behavior model. Besides, data sharing between vehicles and infrastructure in the transportation network can be well solved by Digital Twins Blockchain. The locally-aware multi-intelligent body algorithm saves more than 50% communication overhead and improves operational efficiency by nearly 20% over traditional algorithms by increasing intelligent body infrastructure units. It is adequately suited for large-scale vehicle traffic twins. It can be seen that improving the resilience of Digital Twins is a very obvious change in the adaptability of the traffic system.

Suggested Citation

  • Feng, Hailin & Lv, Haibin & Lv, Zhihan, 2023. "Resilience towarded Digital Twins to improve the adaptability of transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:transa:v:173:y:2023:i:c:s0965856423001064
    DOI: 10.1016/j.tra.2023.103686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423001064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Young, Mischa & Farber, Steven, 2019. "The who, why, and when of Uber and other ride-hailing trips: An examination of a large sample household travel survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 383-392.
    2. Magazzino, Cosimo & Mele, Marco, 2021. "On the relationship between transportation infrastructure and economic development in China," Research in Transportation Economics, Elsevier, vol. 88(C).
    3. Young, Mischa & Farber, Steven, 2019. "The Who, Why, and When of Uber and other Ride-hailing Trips: An Examination of a Large Sample Household Travel Survey," OSF Preprints x7ryj, Center for Open Science.
    4. Ali Gohar & Gianfranco Nencioni, 2021. "The Role of 5G Technologies in a Smart City: The Case for Intelligent Transportation System," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    5. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    6. Jourquin, Bart & Beuthe, Michel, 2019. "Cost, transit time and speed elasticity calculations for the European continental freight transport," Transport Policy, Elsevier, vol. 83(C), pages 1-12.
    7. Wong, Yale Z. & Hensher, David A. & Mulley, Corinne, 2020. "Mobility as a service (MaaS): Charting a future context," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 5-19.
    8. Monika Kosacka-Olejnik & Mariusz Kostrzewski & Magdalena Marczewska & Bogna Mrówczyńska & Paweł Pawlewski, 2021. "How Digital Twin Concept Supports Internal Transport Systems?—Literature Review," Energies, MDPI, vol. 14(16), pages 1-37, August.
    9. Yi Yang & Jiaying Gu & Siyu Huang & Meilin Wen & Yong Qin, 2022. "Application of Uncertain AHP Method in Analyzing Travel Time Belief Reliability in Transportation Network," Mathematics, MDPI, vol. 10(19), pages 1-20, October.
    10. Bhatti, Ghanishtha & Mohan, Harshit & Raja Singh, R., 2021. "Towards the future of smart electric vehicles: Digital twin technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Jourquin, Bart & Beuthe, Michel, 2019. "Cost, transit time and speed elasticity calculations for the European continental freight transport," LIDAM Reprints CORE 3085, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Becker, Henrik & Balac, Milos & Ciari, Francesco & Axhausen, Kay W., 2020. "Assessing the welfare impacts of Shared Mobility and Mobility as a Service (MaaS)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 228-243.
    13. Chengpeng Wan & Zaili Yang & Di Zhang & Xinping Yan & Shiqi Fan, 2018. "Resilience in transportation systems: a systematic review and future directions," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 479-498, July.
    14. Cheng Qian & Xing Liu & Colin Ripley & Mian Qian & Fan Liang & Wei Yu, 2022. "Digital Twin—Cyber Replica of Physical Things: Architecture, Applications and Future Research Directions," Future Internet, MDPI, vol. 14(2), pages 1-25, February.
    15. Pangbourne, Kate & Mladenović, Miloš N. & Stead, Dominic & Milakis, Dimitris, 2020. "Questioning mobility as a service: Unanticipated implications for society and governance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 35-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Chinh Q. & Tirachini, Alejandro, 2024. "Mobility-as-a-Service and the role of multimodality in the sustainability of urban mobility in developing and developed countries," Transport Policy, Elsevier, vol. 145(C), pages 161-176.
    2. Mark Muller & Seri Park & Ross Lee & Brett Fusco & Gonçalo Homem de Almeida Correia, 2021. "Review of Whole System Simulation Methodologies for Assessing Mobility as a Service (MaaS) as an Enabler for Sustainable Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    3. Narayanan, Santhanakrishnan & Antoniou, Constantinos, 2023. "Shared mobility services towards Mobility as a Service (MaaS): What, who and when?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    4. Tom Storme & Corneel Casier & Hossein Azadi & Frank Witlox, 2021. "Impact Assessments of New Mobility Services: A Critical Review," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    5. Ruhrort, Lisa, 2020. "Reassessing the Role of Shared Mobility Services in a Transport Transition: Can They Contribute the Rise of an Alternative Socio-Technical Regime of Mobility?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(19), pages 1-1.
    6. He, Brian Yueshuai & Zhou, Jinkai & Ma, Ziyi & Wang, Ding & Sha, Di & Lee, Mina & Chow, Joseph Y.J. & Ozbay, Kaan, 2021. "A validated multi-agent simulation test bed to evaluate congestion pricing policies on population segments by time-of-day in New York City," Transport Policy, Elsevier, vol. 101(C), pages 145-161.
    7. Ting Wang & Yong Zhang & Meiye Li & Lei Liu, 2019. "How Do Passengers with Different Using Frequencies Choose between Traditional Taxi Service and Online Car-Hailing Service? A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    8. Agrawal, David R. & Zhao, Weihua, 2023. "Taxing Uber," Journal of Public Economics, Elsevier, vol. 221(C).
    9. Brown, Anne, 2022. "Not all fees are created equal: Equity implications of ride-hail fee structures and revenues," Transport Policy, Elsevier, vol. 125(C), pages 1-10.
    10. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    11. Lee, Yongsung & Lee, Bumsoo, 2022. "What’s eating public transit in the United States? Reasons for declining transit ridership in the 2010s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 126-143.
    12. Xiong, Ziyue & Jian Li, & Wu, Hangbin, 2021. "Understanding operation patterns of urban online ride-hailing services: A case study of Xiamen," Transport Policy, Elsevier, vol. 101(C), pages 100-118.
    13. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    14. Ye, Jianhong & Zheng, Jiaqi, 2024. "How stakeholders influence MaaS implementation? An analysis based on evolutionary game theory," Transport Policy, Elsevier, vol. 149(C), pages 198-210.
    15. Henao, Alejandro & Marshall, Wesley E., 2019. "An analysis of the individual economics of ride-hailing drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 440-451.
    16. Young, Mischa & Allen, Jeff & Farber, Steven, 2019. "Measuring when Uber behaves as a substitute or complement to transit: An examination of travel-time differences in Toronto," OSF Preprints hvbma, Center for Open Science.
    17. Zhu, Pengyu & Tan, Xinying & Zhao, Songnian & Shi, Shuai & Wang, Mingshu, 2022. "Land use regulations, transit investment, and commuting preferences," Land Use Policy, Elsevier, vol. 122(C).
    18. Iria Lopez-Carreiro & Andres Monzon & Elena Lopez, 2023. "MaaS Implications in the Smart City: A Multi-Stakeholder Approach," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    19. Blumenberg, Evelyn & Paul, Julene & Pierce, Gregory, 2021. "Travel in the digital age: Vehicle ownership and technology-facilitated accessibility," Transport Policy, Elsevier, vol. 103(C), pages 86-94.
    20. Young, Mischa & Allen, Jeff & Farber, Steven, 2020. "Measuring when Uber behaves as a substitute or supplement to transit: An examination of travel-time differences in Toronto," Journal of Transport Geography, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:173:y:2023:i:c:s0965856423001064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.