IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4919-d612612.html
   My bibliography  Save this article

How Digital Twin Concept Supports Internal Transport Systems?—Literature Review

Author

Listed:
  • Monika Kosacka-Olejnik

    (Faculty of Engineering Management, Poznan University of Technology, 2 Jacka Rychlewskiego St., 60-965 Poznan, Poland)

  • Mariusz Kostrzewski

    (Faculty of Transport, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland)

  • Magdalena Marczewska

    (Faculty of Management, University of Warsaw, 1/3 Szturmowa St., 02-678 Warsaw, Poland)

  • Bogna Mrówczyńska

    (Faculty of Transport and Aviation Engineering, Silesian University of Technology, 8 Krasińskiego St., 40-019 Katowice, Poland)

  • Paweł Pawlewski

    (Faculty of Engineering Management, Poznan University of Technology, 2 Jacka Rychlewskiego St., 60-965 Poznan, Poland)

Abstract

In the Industry 4.0 era, the Digital Twin has become one of the most promising enabling technologies supporting material flow. Although the literature on the Digital Twin is becoming relatively well explored, including a certain number of review papers, the context of the Digital Twins application in internal transport systems has not been investigated so far. This paper thoroughly reviews the research on the Digital Twins applied in internal transport systems concerning major research trends within this research area and identification of future research directions. It provides clarification of various definitions related to the Digital Twin concept, including misconceptions such as a digital shadow, a digital model, and a digital mirror. Additionally, the relationships between terms such as material handling, material flow, and intralogistics in the context of internal transport systems coupled with the Digital Twin are explained. This paper’s contribution to the current state of the art of the Digital Twins is three-fold: (1) recognition of the most influential and high-impact journals, papers, and researchers; (2) identification of the major research trends related to the Digital Twins applications in internal transport systems, and (3) presentation of future research agendas in investigating Digital Twins applied for internal transport systems.

Suggested Citation

  • Monika Kosacka-Olejnik & Mariusz Kostrzewski & Magdalena Marczewska & Bogna Mrówczyńska & Paweł Pawlewski, 2021. "How Digital Twin Concept Supports Internal Transport Systems?—Literature Review," Energies, MDPI, vol. 14(16), pages 1-37, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4919-:d:612612
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katherine W. McCain, 1991. "Mapping economics through the journal literature: An experiment in journal cocitation analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 42(4), pages 290-296, May.
    2. Magdalena Marczewska & Mariusz Kostrzewski, 2020. "Sustainable Business Models: A Bibliometric Performance Analysis," Energies, MDPI, vol. 13(22), pages 1-30, November.
    3. Chen, Ziyue & Huang, Lizhen, 2021. "Digital twins for information-sharing in remanufacturing supply chain: A review," Energy, Elsevier, vol. 220(C).
    4. Kevin W. Boyack & Richard Klavans, 2014. "Creation of a highly detailed, dynamic, global model and map of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 670-685, April.
    5. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    6. Katherine W. McCain, 1990. "Mapping authors in intellectual space: A technical overview," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 433-443, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Hailin & Lv, Haibin & Lv, Zhihan, 2023. "Resilience towarded Digital Twins to improve the adaptability of transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    2. Milena Kajba & Borut Jereb & Tina Cvahte Ojsteršek, 2023. "Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach," Energies, MDPI, vol. 16(9), pages 1-23, May.
    3. Hao Wang & Quan Liu & Hongyang Zhang & Yinlong Jin & Wenzhen Yu, 2022. "A Two-Stage Decision-Making Method Based on WebGIS for Bulk Material Transportation of Hydropower Construction," Energies, MDPI, vol. 15(5), pages 1-21, February.
    4. Abdul Quadir Md & Divyank Agrawal & Monark Mehta & Arun Kumar Sivaraman & Kong Fah Tee, 2021. "Time Optimization of Unmanned Aerial Vehicles Using an Augmented Path," Future Internet, MDPI, vol. 13(12), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolina Navarro-Lopez & Salvador Linares-Mustaros & Carles Mulet-Forteza, 2022. "“The Statistical Analysis of Compositional Data†by John Aitchison (1986): A Bibliometric Overview," SAGE Open, , vol. 12(2), pages 21582440221, April.
    2. Gina Santos & Carla Susana Marques & João J. Ferreira, 2018. "A look back over the past 40 years of female entrepreneurship: mapping knowledge networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 953-987, May.
    3. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    4. Gallego-Losada, María-Jesús & Montero-Navarro, Antonio & García-Abajo, Elisa & Gallego-Losada, Rocío, 2023. "Digital financial inclusion. Visualizing the academic literature," Research in International Business and Finance, Elsevier, vol. 64(C).
    5. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Raymundo das Neves Machado & Benjamín Vargas-Quesada & Jacqueline Leta, 2016. "Intellectual structure in stem cell research: exploring Brazilian scientific articles from 2001 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 525-537, February.
    7. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    8. Florentin Gloetzl & Ernest Aigner, 2015. "Pluralism in the Market of Science? A citation network analysis of economic research at universities in Vienna," Ecological Economics Papers ieep5, Institute of Ecological Economics.
    9. Shahzad, Umer & Gupta, Mansi & Sharma, Gagan Deep & Rao, Amar & Chopra, Ritika, 2022. "Resolving energy poverty for social change: Research directions and agenda," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    10. Muhammad Ashraf Fauzi, 2023. "Social media in disaster management: review of the literature and future trends through bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 953-975, September.
    11. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
    12. Caputo, Andrea & Pizzi, Simone & Pellegrini, Massimiliano M. & Dabić, Marina, 2021. "Digitalization and business models: Where are we going? A science map of the field," Journal of Business Research, Elsevier, vol. 123(C), pages 489-501.
    13. Perianes-Rodriguez, Antonio & Waltman, Ludo & van Eck, Nees Jan, 2016. "Constructing bibliometric networks: A comparison between full and fractional counting," Journal of Informetrics, Elsevier, vol. 10(4), pages 1178-1195.
    14. Boyack, Kevin W. & Klavans, Richard, 2014. "Including cited non-source items in a large-scale map of science: What difference does it make?," Journal of Informetrics, Elsevier, vol. 8(3), pages 569-580.
    15. Fernando Morante-Carballo & Néstor Montalván-Burbano & Paúl Carrión-Mero & Nathaly Espinoza-Santos, 2021. "Cation Exchange of Natural Zeolites: Worldwide Research," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    16. Manuel Portugal Ferreira & José Eduardo Storopoli & Fernando Ribeiro Serra, 2014. "Two Decades of Research on Strategic Alliances: Analysis of Citations, Co-citations and Themes Researched," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 18(spe), pages 109-133.
    17. Francesco Paolo Appio & Fabrizio Cesaroni & Alberto Minin, 2014. "Visualizing the structure and bridges of the intellectual property management and strategy literature: a document co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 623-661, October.
    18. Kevin W. Boyack, 2017. "Thesaurus-based methods for mapping contents of publication sets," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1141-1155, May.
    19. Hsiao, Chun Hua & Yang, Chyan, 2011. "The intellectual development of the technology acceptance model: A co-citation analysis," International Journal of Information Management, Elsevier, vol. 31(2), pages 128-136.
    20. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 56-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4919-:d:612612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.