IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v149y2021icp124-138.html
   My bibliography  Save this article

Optimizing underground shelter location and mass pedestrian evacuation in urban community areas: A case study of Shanghai

Author

Listed:
  • Jin, Jian Gang
  • Shen, Yifan
  • Hu, Hao
  • Fan, Yiqun
  • Yu, Mingjian

Abstract

In recent years, natural disasters happening over the world pose severe challenges to emergency evacuation systems, especially for highly-populated urban community areas. Underground spaces not systematically utilized yet provide a new development direction for the construction of emergency shelters. Emergency response for mitigating negative impacts of disasters calls for well-designed shelter system and effective management of pedestrian evacuation. In this paper, we study the location selection of underground emergency shelters in urban community areas, along with pedestrian evacuation planning once disaster happens. The aim is to effectively use the existing underground space and sidewalk network to satisfy pedestrian evacuation demand as much as possible. We formulate the problem as a network flow model, and develop a minimum-cost-maximum-flow solution approach. A real-world case study based on the East Nanjing Road community area in central Shanghai is conducted. The results show that sidewalks are the bottleneck of the pedestrian evacuation network due to their limited capacity. Reserving vehicle lanes, implementing one-way evacuation, and opening local small-scale underground shelters, are shown to be effective measures for improving the pedestrian evacuation performance. Overall, the proposed methodology and managerial insights based on the case study in Shanghai show a great potential of employing underground space as shelters for pedestrian evacuation system design in urban community areas.

Suggested Citation

  • Jin, Jian Gang & Shen, Yifan & Hu, Hao & Fan, Yiqun & Yu, Mingjian, 2021. "Optimizing underground shelter location and mass pedestrian evacuation in urban community areas: A case study of Shanghai," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 124-138.
  • Handle: RePEc:eee:transa:v:149:y:2021:i:c:p:124-138
    DOI: 10.1016/j.tra.2021.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421001075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murali, Pavankumar & Ordóñez, Fernando & Dessouky, Maged M., 2012. "Facility location under demand uncertainty: Response to a large-scale bio-terror attack," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 78-87.
    2. Daganzo, Carlos F. & So, Stella K., 2011. "Managing evacuation networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1424-1432.
    3. Xie, Chi & Lin, Dung-Ying & Travis Waller, S., 2010. "A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 295-316, May.
    4. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    5. Bretschneider, S. & Kimms, A., 2011. "A basic mathematical model for evacuation problems in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 523-539, July.
    6. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    7. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    8. Lim, Gino J. & Zangeneh, Shabnam & Reza Baharnemati, M. & Assavapokee, Tiravat, 2012. "A capacitated network flow optimization approach for short notice evacuation planning," European Journal of Operational Research, Elsevier, vol. 223(1), pages 234-245.
    9. Pillac, Victor & Van Hentenryck, Pascal & Even, Caroline, 2016. "A conflict-based path-generation heuristic for evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 136-150.
    10. Xiaozheng He & Srinivas Peeta, 2014. "Dynamic Resource Allocation Problem for Transportation Network Evacuation," Networks and Spatial Economics, Springer, vol. 14(3), pages 505-530, December.
    11. Li, Anna C.Y. & Nozick, Linda & Xu, Ningxiong & Davidson, Rachel, 2012. "Shelter location and transportation planning under hurricane conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 715-729.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Asriandi Ekaputra & Changkye Lee & Seong-Hoon Kee & Jurng-Jae Yee, 2022. "Emergency Shelter Geospatial Location Optimization for Flood Disaster Condition: A Review," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    2. Wang, Qingyi & Liu, Zhuomeng & Jiang, Peng & Luo, Li, 2022. "A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kınay, Ömer Burak & Yetis Kara, Bahar & Saldanha-da-Gama, Francisco & Correia, Isabel, 2018. "Modeling the shelter site location problem using chance constraints: A case study for Istanbul," European Journal of Operational Research, Elsevier, vol. 270(1), pages 132-145.
    2. Hadas, Yuval & Laor, Amir, 2013. "Network design model with evacuation constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 1-9.
    3. Wang, Qingyi & Wallace, Stein W., 2022. "Non-compliance in transit-based evacuation pick-up point assignments," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    4. Bian Liang & Dapeng Yang & Xinghong Qin & Teresa Tinta, 2019. "A Risk-Averse Shelter Location and Evacuation Routing Assignment Problem in an Uncertain Environment," IJERPH, MDPI, vol. 16(20), pages 1-28, October.
    5. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    6. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    7. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    8. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    9. Xiaozheng He & Hong Zheng & Srinivas Peeta & Yongfu Li, 2018. "Network Design Model to Integrate Shelter Assignment with Contraflow Operations in Emergency Evacuation Planning," Networks and Spatial Economics, Springer, vol. 18(4), pages 1027-1050, December.
    10. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    11. Shaoqing Geng & Hanping Hou & Shaoguang Zhang, 2020. "Multi-Criteria Location Model of Emergency Shelters in Humanitarian Logistics," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    12. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    13. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    14. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    15. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    16. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    17. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    18. Konrad, Renata A. & Trapp, Andrew C. & Palmbach, Timothy M. & Blom, Jeffrey S., 2017. "Overcoming human trafficking via operations research and analytics: Opportunities for methods, models, and applications," European Journal of Operational Research, Elsevier, vol. 259(2), pages 733-745.
    19. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    20. Wu, Wen-Xiang & Huang, Hai-Jun, 2019. "A combined, adaptive strategy for managing evacuation routes," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 182-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:149:y:2021:i:c:p:124-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.