IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v104y2015icp17-25.html
   My bibliography  Save this article

The evolution of generalized reciprocity in social interaction networks

Author

Listed:
  • Voelkl, Bernhard

Abstract

Generalized reciprocity has been proposed as a mechanism for enabling continued cooperation between unrelated individuals. It can be described by the simple rule “help somebody if you received help from someone†, and as it does not require individual recognition, complex cognition or extended memory capacities, it has the potential to explain cooperation in a large number of organisms. In a panmictic population this mechanism is vulnerable to defection by individuals who readily accept help but do not help themselves. Here, I investigate to what extent the limitation of social interactions to a social neighborhood can lead to conditions that favor generalized reciprocity in the absence of population structuring. It can be shown that cooperation is likely to evolve if one assumes certain sparse interaction graphs, if strategies are discrete, and if spontaneous helping and reciprocating are independently inherited.

Suggested Citation

  • Voelkl, Bernhard, 2015. "The evolution of generalized reciprocity in social interaction networks," Theoretical Population Biology, Elsevier, vol. 104(C), pages 17-25.
  • Handle: RePEc:eee:thpobi:v:104:y:2015:i:c:p:17-25
    DOI: 10.1016/j.tpb.2015.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580915000660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2015.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Débarre & C. Hauert & M. Doebeli, 2014. "Social evolution in structured populations," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    2. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    3. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    4. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    5. Martin A. Nowak & Karl Sigmund, 2005. "Evolution of indirect reciprocity," Nature, Nature, vol. 437(7063), pages 1291-1298, October.
    6. Fruteau, C. & Voelkl, B. & van Damme, E.E.C. & Noe, R., 2009. "Supply and demand determine the market value of food providers in wild vervet monkeys," Other publications TiSEM c108fa1a-6b92-4107-a1e6-6, Tilburg University, School of Economics and Management.
    7. Peter D. Taylor & Troy Day & Geoff Wild, 2007. "Evolution of cooperation in a finite homogeneous graph," Nature, Nature, vol. 447(7143), pages 469-472, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salazar, Miguel & Joel Shaw, Daniel & Czekóová, Kristína & Staněk, Rostislav & Brázdil, Milan, 2022. "The role of generalised reciprocity and reciprocal tendencies in the emergence of cooperative group norms," Journal of Economic Psychology, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Schmid & Farbod Ekbatani & Christian Hilbe & Krishnendu Chatterjee, 2023. "Quantitative assessment can stabilize indirect reciprocity under imperfect information," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Christopher Graser & Takako Fujiwara-Greve & Julian García & Matthijs van Veelen, 2024. "Repeated games with partner choice," Tinbergen Institute Discussion Papers 24-038/I, Tinbergen Institute.
    3. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    4. Jorge M Pacheco & Flávio L Pinheiro & Francisco C Santos, 2009. "Population Structure Induces a Symmetry Breaking Favoring the Emergence of Cooperation," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.
    5. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    6. Swami Iyer & Timothy Killingback, 2020. "Evolution of Cooperation in Social Dilemmas with Assortative Interactions," Games, MDPI, vol. 11(4), pages 1-31, September.
    7. Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.
    8. Faqi Du & Feng Fu, 2011. "Partner Selection Shapes the Strategic and Topological Evolution of Cooperation," Dynamic Games and Applications, Springer, vol. 1(3), pages 354-369, September.
    9. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Charness, Gary & Du, Ninghua & Yang, Chun-Lei, 2011. "Trust and trustworthiness reputations in an investment game," Games and Economic Behavior, Elsevier, vol. 72(2), pages 361-375, June.
    11. Andrew W. Bausch, 2014. "Evolving intergroup cooperation," Computational and Mathematical Organization Theory, Springer, vol. 20(4), pages 369-393, December.
    12. Suzuki, Shinsuke & Akiyama, Eizo, 2008. "Evolutionary stability of first-order-information indirect reciprocity in sizable groups," Theoretical Population Biology, Elsevier, vol. 73(3), pages 426-436.
    13. Liang, Pinghan & Meng, Juanjuan, 2016. "Favor transmission and social image concern: An experimental study," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 63(C), pages 14-21.
    14. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    15. Mirko Duradoni & Mario Paolucci & Franco Bagnoli & Andrea Guazzini, 2018. "Fairness and Trust in Virtual Environments: The Effects of Reputation," Future Internet, MDPI, vol. 10(6), pages 1-15, June.
    16. Jason Delaney & Sarah Jacobson, 2016. "Payments or Persuasion: Common Pool Resource Management with Price and Non-price Measures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(4), pages 747-772, December.
    17. Gao, Yan & Li, Minlan & Hu, Yuanyuan & Wang, Rui-Wu & Wang, Chao, 2024. "Evolutionary dynamics in voluntary prisoner’s dilemma game with environmental feedbacks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    18. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    19. Brent Simpson & Bradley Montgomery & David Melamed, 2023. "Reputations for treatment of outgroup members can prevent the emergence of political segregation in cooperative networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Feng, Sinan & Liu, Xuesong & Dong, Yida, 2022. "Limited punishment pool may promote cooperation in the public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:104:y:2015:i:c:p:17-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.