IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v216y2025ics0040162525001829.html
   My bibliography  Save this article

A novel similarity-based recommendation for identifying potential customers in new markets using an inter-firm transaction network

Author

Listed:
  • Jang, Kabsoo
  • Choi, Jeongsub
  • Lee, Ho-shin
  • Kim, Byunghoon

Abstract

In a dynamically evolving corporate landscape, it is essential to identify potential customers to ensure the sustainable growth of companies. In this context, potential customers can be identified by predicting the link that foreshadows future transactions between pairs of companies in an inter-firm transaction network. Similarity-based link prediction approaches are popular for predicting links, owing to their interpretability and scalability. However, existing similarity measures have proven inadequate for capturing intermarket similarities. This limitation restricts their applicability to scenarios in which businesses seek to enter new markets. To overcome this limitation, we propose a novel similarity score, designed to capture the similarities between firms in separate markets. The proposed similarity score is utilized to identify potential customers in new markets by leveraging transaction data along with essential firm attributes. We validate our approach through toy network experiments, visually demonstrating its ability to predict potential customers across different markets. Moreover, the proposed method consistently outperforms baseline approaches in terms of the Area Under the Curve (AUC), precision@k, and recall@k. These findings underscore the effectiveness of the proposed method as a valuable tool for businesses seeking to enter new markets.

Suggested Citation

  • Jang, Kabsoo & Choi, Jeongsub & Lee, Ho-shin & Kim, Byunghoon, 2025. "A novel similarity-based recommendation for identifying potential customers in new markets using an inter-firm transaction network," Technological Forecasting and Social Change, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:tefoso:v:216:y:2025:i:c:s0040162525001829
    DOI: 10.1016/j.techfore.2025.124151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162525001829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2025.124151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:216:y:2025:i:c:s0040162525001829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.