IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v161y2020ics0040162520311550.html
   My bibliography  Save this article

Forecasting technological positioning through technology knowledge redundancy: Patent citation analysis of IoT, cybersecurity, and Blockchain

Author

Listed:
  • Daim, Tugrul
  • Lai, Kuei Kuei
  • Yalcin, Haydar
  • Alsoubie, Fayez
  • Kumar, Vimal

Abstract

Researchers and organizations are becoming increasingly interested in Internet of Things (IoT) cybersecurity and blockchain technology due to its ability to provide solutions to problems of classical centralized architecture. This research approaches the relative locations of a company in the technological network based on patent citations of the IoT cybersecurity and blockchain.

Suggested Citation

  • Daim, Tugrul & Lai, Kuei Kuei & Yalcin, Haydar & Alsoubie, Fayez & Kumar, Vimal, 2020. "Forecasting technological positioning through technology knowledge redundancy: Patent citation analysis of IoT, cybersecurity, and Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:tefoso:v:161:y:2020:i:c:s0040162520311550
    DOI: 10.1016/j.techfore.2020.120329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162520311550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.120329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olav Sorenson & Jasjit Singh, 2007. "Science, Social Networks and Spillovers," Industry and Innovation, Taylor & Francis Journals, vol. 14(2), pages 219-238.
    2. Yong-Gil Lee, 2009. "What affects a patent’s value? An analysis of variables that affect technological, direct economic, and indirect economic value: An exploratory conceptual approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(3), pages 623-633, June.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. William Nikolakis & Lijo John & Harish Krishnan, 2018. "How Blockchain Can Shape Sustainable Global Value Chains: An Evidence, Verifiability, and Enforceability (EVE) Framework," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    5. repec:fth:harver:1473 is not listed on IDEAS
    6. Montes, Gabriel Axel & Goertzel, Ben, 2019. "Distributed, decentralized, and democratized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 354-358.
    7. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2000. "Market Value and Patent Citations: A First Look," NBER Working Papers 7741, National Bureau of Economic Research, Inc.
    8. Karki, M. M. S., 1997. "Patent citation analysis: A policy analysis tool," World Patent Information, Elsevier, vol. 19(4), pages 269-272, December.
    9. Yu-Hsin Chang & Kuei-Kuei Lai & Chien-Yu Lin & Fang-Pei Su & Ming-Chung Yang, 2017. "A hybrid clustering approach to identify network positions and roles through social network and multivariate analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1733-1755, December.
    10. Hissu Hyvärinen & Marten Risius & Gustav Friis, 2017. "A Blockchain-Based Approach Towards Overcoming Financial Fraud in Public Sector Services," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(6), pages 441-456, December.
    11. Mattila, Juri, 2016. "The Blockchain Phenomenon – The Disruptive Potential of Distributed Consensus Architectures," ETLA Working Papers 38, The Research Institute of the Finnish Economy.
    12. Jan Brocke & Wolfgang Maaß & Peter Buxmann & Alexander Maedche & Jan Marco Leimeister & Günter Pecht, 2018. "Future Work and Enterprise Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(4), pages 357-366, August.
    13. Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
    14. Leo Egghe & Ronald Rousseau, 2002. "Co-citation, bibliographic coupling and a characterization of lattice citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(3), pages 349-361, November.
    15. Pereira, Joana & Tavalaei, M. Mahdi & Ozalp, Hakan, 2019. "Blockchain-based platforms: Decentralized infrastructures and its boundary conditions," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 94-102.
    16. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    17. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    18. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    19. Shih-Chang Hung & John S. Liu & Louis Y. Y. Lu & Yu-Chiang Tseng, 2014. "Technological change in lithium iron phosphate battery: the key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 97-120, July.
    20. Witold Nowiński & Miklós Kozma, 2017. "How Can Blockchain Technology Disrupt the Existing Business Models?," Entrepreneurial Business and Economics Review, Centre for Strategic and International Entrepreneurship at the Cracow University of Economics., vol. 5(3), pages 173-188.
    21. Marsal-Llacuna, Maria-Lluïsa, 2018. "Future living framework: Is blockchain the next enabling network?," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 226-234.
    22. Jamie Berryhill & Théo Bourgery & Angela Hanson, 2018. "Blockchains Unchained: Blockchain Technology and its Use in the Public Sector," OECD Working Papers on Public Governance 28, OECD Publishing.
    23. Choe, Hochull & Lee, Duk Hee & Seo, Il Won & Kim, Hee Dae, 2013. "Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 492-505.
    24. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    25. Kuei-Kuei Lai & Chien-Yu Lin & Yu-Hsin Chang & Ming-Chung Yang & Wen-Goang Yang, 2017. "A structured approach to explore technological competencies through R&D portfolio of photovoltaic companies by patent statistics," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1327-1351, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Loan T.Q. & Hoang, Thinh G. & Do, Linh H. & Ngo, Xuan T. & Nguyen, Phuong H.T. & Nguyen, Giang D.L. & Nguyen, Giang N.T., 2021. "The role of blockchain technology-based social crowdfunding in advancing social value creation," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    2. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    3. Plantec, Quentin & Le Masson, Pascal & Weil, Benoît, 2021. "Impact of knowledge search practices on the originality of inventions: A study in the oil & gas industry through dynamic patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    4. Chand Bhatt, Priyanka & Kumar, Vimal & Lu, Tzu-Chuen & Daim, Tugrul, 2021. "Technology convergence assessment: Case of blockchain within the IR 4.0 platform," Technology in Society, Elsevier, vol. 67(C).
    5. Kumar, Shashank & Raut, Rakesh D. & Agrawal, Nishant & Cheikhrouhou, Naoufel & Sharma, Mahak & Daim, Tugrul, 2022. "Integrated blockchain and internet of things in the food supply chain: Adoption barriers," Technovation, Elsevier, vol. 118(C).
    6. Yougen Cao & Shengce Ren & Mei Du, 2022. "Strategic trademark management: a systematic literature review and prospects for future research," Journal of Brand Management, Palgrave Macmillan, vol. 29(5), pages 435-453, September.
    7. Jiao Zhang & Qian Wang & Yiping Xia & Katsunori Furuya, 2022. "Knowledge Map of Spatial Planning and Sustainable Development: A Visual Analysis Using CiteSpace," Land, MDPI, vol. 11(3), pages 1-24, February.
    8. Garza Ramos, Alejandro & Daim, Tugrul & Gaats, Lukas & Hutmacher, Dietmar W. & Hackenberger, David, 2022. "Technology roadmap for the development of a 3D cell culture workstation for a biomedical industry startup," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    9. Yang, Zaoli & Wu, Qingyang & Venkatachalam, K. & Li, Yuchen & Xu, Bing & Trojovský, Pavel, 2022. "Topic identification and sentiment trends in Weibo and WeChat content related to intellectual property in China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    10. Christian Ulrich & Benjamin Frieske & Stephan A. Schmid & Horst E. Friedrich, 2022. "Monitoring and Forecasting of Key Functions and Technologies for Automated Driving," Forecasting, MDPI, vol. 4(2), pages 1-24, May.
    11. Sun, Bing & Yang, Xueting & Zhong, Shen & Tian, Shengnan & Liang, Tian, 2024. "How do technology convergence and expansibility affect information technology diffusion? Evidence from the internet of things technology in China," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    12. Wang, Xiaoli & Daim, Tugrul & Huang, Lucheng & Li, Zhiqiang & Shaikh, Ruqia & Kassi, Diby Francois, 2022. "Monitoring the development trend and competition status of high technologies using patent analysis and bibliographic coupling: The case of electronic design automation technology," Technology in Society, Elsevier, vol. 71(C).
    13. Yuan, Xiaodong & Cai, Yuchen, 2021. "Forecasting the development trend of low emission vehicle technologies: Based on patent data," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    14. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    15. Bootz, Jean-Philippe & Michel, Sophie & Pallud, Jessie & Monti, Régine, 2022. "Possible changes of Industry 4.0 in 2030 in the face of uberization: Results of a participatory and systemic foresight study," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    16. Yu, Dejian & Sheng, Libo, 2021. "Influence difference main path analysis: Evidence from DNA and blockchain domain citation networks," Journal of Informetrics, Elsevier, vol. 15(4).
    17. Jiang, Zihao & Liu, Zhiying, 2022. "Policies and exploitative and exploratory innovations of the wind power industry in China: The role of technological path dependence," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    18. Bhatt, Priyanka C. & Lai, Kuei-Kuei & Drave, Vinayak A. & Lu, Tzu-Chuen & Kumar, Vimal, 2023. "Patent analysis based technology innovation assessment with the lens of disruptive innovation theory: A case of blockchain technological trajectories," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    19. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    2. von Wartburg, Iwan & Teichert, Thorsten & Rost, Katja, 2005. "Inventive progress measured by multi-stage patent citation analysis," Research Policy, Elsevier, vol. 34(10), pages 1591-1607, December.
    3. Stefan Lachenmaier, 2005. "Identification of Available and Desirable Indicators for Patent Systems, Patenting Processes and Patent Rights Research Project for the German Patent and Trademark Office," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 25, September.
    4. Zhang, Sifei & Yuan, Chien-Chung & Chang, Ke-Chiun & Ken, Yun, 2012. "Exploring the nonlinear effects of patent H index, patent citations, and essential technological strength on corporate performance by using artificial neural network," Journal of Informetrics, Elsevier, vol. 6(4), pages 485-495.
    5. Mu-Hsuan Huang & Dar-Zen Chen & Danqi Shen & Mona S. Wang & Fred Y. Ye, 2015. "Measuring technological performance of assignees using trace metrics in three fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 61-86, July.
    6. Chi-Yo Huang & Liang-Chieh Wang & Ying-Ting Kuo & Wei-Ti Huang, 2021. "A Novel Analytic Framework of Technology Mining Using the Main Path Analysis and the Decision-Making Trial and Evaluation Laboratory-Based Analytic Network Process," Mathematics, MDPI, vol. 9(19), pages 1-24, October.
    7. Mu-Hsuan Huang & Hui-Yun Sung & Chun-Chieh Wang & Dar-Zen Chen, 2013. "Exploring patent performance and technology interactions of universities, industries, governments and individuals," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 11-26, July.
    8. Lim, Kwanghui, 2004. "The relationship between research and innovation in the semiconductor and pharmaceutical industries (1981-1997)," Research Policy, Elsevier, vol. 33(2), pages 287-321, March.
    9. Chang, Ke-Chiun & Chen, Dar-Zen & Huang, Mu-Hsuan, 2012. "The relationships between the patent performance and corporation performance," Journal of Informetrics, Elsevier, vol. 6(1), pages 131-139.
    10. Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
    11. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    12. Per Botolf Maurseth, 2005. "Lovely but dangerous: The impact of patent citations on patent renewal," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 351-374.
    13. Chand Bhatt, Priyanka & Kumar, Vimal & Lu, Tzu-Chuen & Daim, Tugrul, 2021. "Technology convergence assessment: Case of blockchain within the IR 4.0 platform," Technology in Society, Elsevier, vol. 67(C).
    14. Corredoira, Rafael A. & Banerjee, Preeta M., 2015. "Measuring patent's influence on technological evolution: A study of knowledge spanning and subsequent inventive activity," Research Policy, Elsevier, vol. 44(2), pages 508-521.
    15. Leila Tahmooresnejad & Catherine Beaudry, 2019. "Collaboration or funding: lessons from a study of nanotechnology patenting in Canada and the United States," The Journal of Technology Transfer, Springer, vol. 44(3), pages 741-777, June.
    16. Kilponen, Juha & Santavirta, Torsten, 2004. "Competition and Innovation - Microeconometric Evidence using Finnish Data," Research Reports 113, VATT Institute for Economic Research.
    17. Ufuk Akcigit, 2009. "Firm Size, Innovation Dynamics and Growth," 2009 Meeting Papers 1267, Society for Economic Dynamics.
    18. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    19. Bruno Van Pottelsberghe & Eleftherios Sapsalis & Ran Navon, 2006. "Academic vs. industry patenting: an in-depth analysis of what determines patent value," Working Papers CEB 05-008.RS, ULB -- Universite Libre de Bruxelles.
    20. Gao, Wenlian & Chou, Julia, 2015. "Innovation efficiency, global diversification, and firm value," Journal of Corporate Finance, Elsevier, vol. 30(C), pages 278-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:161:y:2020:i:c:s0040162520311550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.