IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v94y2014icp39-47.html
   My bibliography  Save this article

A recursive pricing formula for a path-dependent option under the constant elasticity of variance diffusion

Author

Listed:
  • Kim, Jeong-Hoon
  • Park, Sang-Hyeon

Abstract

In this paper, we consider a path-dependent option in finance under the constant elasticity of variance diffusion. We use a perturbation argument and the probabilistic representation (the Feynman–Kac theorem) of a partial differential equation to obtain a complete asymptotic expansion of the option price in a recursive manner based on the Black–Scholes formula and prove rigorously the existence of the expansion with a convergence error.

Suggested Citation

  • Kim, Jeong-Hoon & Park, Sang-Hyeon, 2014. "A recursive pricing formula for a path-dependent option under the constant elasticity of variance diffusion," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 39-47.
  • Handle: RePEc:eee:stapro:v:94:y:2014:i:c:p:39-47
    DOI: 10.1016/j.spl.2014.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214002405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    2. Schroder, Mark Douglas, 1989. " Computing the Constant Elasticity of Variance Option Pricing Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 211-219, March.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Park, Sang-Hyeon & Kim, Jeong-Hoon, 2013. "A semi-analytic pricing formula for lookback options under a general stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2537-2543.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hi Jun Choe & Jeong Ho Chu & So Jeong Shin, 2014. "Recombining binomial tree for constant elasticity of variance process," Papers 1410.5955, arXiv.org.
    2. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    3. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007.
    4. Su, EnDer & Wen Wong, Kai, 2019. "Testing the alternative two-state options pricing models: An empirical analysis on TXO," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 101-116.
    5. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    6. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
    7. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    8. Rasmussen, Nicki Søndergaard, 2002. "Hedging with a Misspecified Model," Finance Working Papers 02-15, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    9. Wenqing Bao & ChunLi Chen & Jin E. Zhang, 2013. "Option Pricing with Lie Symmetry Analysis and Similarity Reduction Method," Papers 1311.4074, arXiv.org.
    10. Perrakis, Stylianos & Zhong, Rui, 2015. "Credit spreads and state-dependent volatility: Theory and empirical evidence," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 215-231.
    11. Xiu, Dacheng, 2014. "Hermite polynomial based expansion of European option prices," Journal of Econometrics, Elsevier, vol. 179(2), pages 158-177.
    12. Evangelos Melas, 2018. "Classes of elementary function solutions to the CEV model. I," Papers 1804.07384, arXiv.org.
    13. David Heath & Eckhard Platen, 2006. "Local volatility function models under a benchmark approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 197-206.
    14. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    15. Gao, Jianwei, 2009. "Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 9-18, August.
    16. Dmitry Davydov & Vadim Linetsky, 2003. "Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 51(2), pages 185-209, April.
    17. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    18. José Carlos Dias & João Pedro Vidal Nunes & Aricson Cruz, 2020. "A note on options and bubbles under the CEV model: implications for pricing and hedging," Review of Derivatives Research, Springer, vol. 23(3), pages 249-272, October.
    19. Wang, Hengxu & O’Hara, John G. & Constantinou, Nick, 2015. "A path-independent approach to integrated variance under the CEV model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 130-152.
    20. Kim, Jeong-Hoon & Yoon, Ji-Hun & Lee, Jungwoo & Choi, Sun-Yong, 2015. "On the stochastic elasticity of variance diffusions," Economic Modelling, Elsevier, vol. 51(C), pages 263-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:94:y:2014:i:c:p:39-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.