IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i4p765-774.html
   My bibliography  Save this article

Robustifying principal component analysis with spatial sign vectors

Author

Listed:
  • Taskinen, Sara
  • Koch, Inge
  • Oja, Hannu

Abstract

In this paper, we apply orthogonally equivariant spatial sign covariance matrices as well as their affine equivariant counterparts in principal component analysis. The influence functions and asymptotic covariance matrices of eigenvectors based on robust covariance estimators are derived in order to compare the robustness and efficiency properties. We show in particular that the estimators that use pairwise differences of the observed data have very good efficiency properties, providing practical robust alternatives to classical sample covariance matrix based methods.

Suggested Citation

  • Taskinen, Sara & Koch, Inge & Oja, Hannu, 2012. "Robustifying principal component analysis with spatial sign vectors," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 765-774.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:4:p:765-774
    DOI: 10.1016/j.spl.2012.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212000028
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frahm, Gabriel, 2009. "Asymptotic distributions of robust shape matrices and scales," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1329-1337, August.
    2. Tyler, David E., 2010. "A note on multivariate location and scatter statistics for sparse data sets," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1409-1413, September.
    3. Lutz Dümbgen & David E. Tyler, 2005. "On the Breakdown Properties of Some Multivariate M-Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 247-264.
    4. Marden, John I., 1999. "Some robust estimates of principal components," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 349-359, July.
    5. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    6. Daniel Gervini, 2008. "Robust functional estimation using the median and spherical principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 587-600.
    7. Nordhausen, Klaus & Oja, Hannu, 2011. "Multivariate L1 Statistical Methods: The Package MNM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i05).
    8. Paindaveine, Davy, 2008. "A canonical definition of shape," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2240-2247, October.
    9. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    10. Sirkiä, Seija & Taskinen, Sara & Oja, Hannu, 2007. "Symmetrised M-estimators of multivariate scatter," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1611-1629, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:testjl:v:26:y:2017:i:3:d:10.1007_s11749-016-0519-x is not listed on IDEAS
    2. Dürre, Alexander & Tyler, David E. & Vogel, Daniel, 2016. "On the eigenvalues of the spatial sign covariance matrix in more than two dimensions," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 80-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:4:p:765-774. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.