IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i12p2108-2114.html
   My bibliography  Save this article

Asymptotic properties of sieve bootstrap prediction intervals for FARIMA processes

Author

Listed:
  • Rupasinghe, Maduka
  • Samaranayake, V.A.

Abstract

The sieve bootstrap is a resampling technique that uses autoregressive approximations of order p to model invertible linear time series, where p is allowed to go to infinity with sample size n. The asymptotic properties of sieve bootstrap prediction intervals for stationary invertible linear processes with short memory have been established in the past. In this paper, we extend these results to long memory (FARIMA) processes. We show that under certain regularity conditions the sieve bootstrap provides consistent estimators of the conditional distribution of future values of FARIMA processes, given the observed data.

Suggested Citation

  • Rupasinghe, Maduka & Samaranayake, V.A., 2012. "Asymptotic properties of sieve bootstrap prediction intervals for FARIMA processes," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2108-2114.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2108-2114
    DOI: 10.1016/j.spl.2012.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002830
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non-Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    2. D. Poskitt, 2007. "Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 697-725, December.
    3. Bühlmann, Peter, 1995. "Moving-average representation of autoregressive approximations," Stochastic Processes and their Applications, Elsevier, vol. 60(2), pages 331-342, December.
    4. Alonso, Andrés M. & Peña, Daniel & Romo, Juan, 2003. "On sieve bootstrap prediction intervals," Statistics & Probability Letters, Elsevier, vol. 65(1), pages 13-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonçalves Mazzeu, Joao Henrique & Ruiz, Esther & Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2108-2114. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.