IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v52y2001i4p365-372.html
   My bibliography  Save this article

Detection of jumps by wavelets in a heteroscedastic autoregressive model

Author

Listed:
  • Wong, Heung
  • Ip, Waicheung
  • Li, Yuan

Abstract

Wavelets are applied to detect the jumps in a heteroscedastic autoregressive model. The empirical wavelet coefficients are defined respectively for the conditional mean and the conditional variance of the model. It is shown that the wavelet coefficients exhibit high peaks near the jump points, based on which a procedure is developed to identify and then to locate the jumps. All estimators are shown to be consistent.

Suggested Citation

  • Wong, Heung & Ip, Waicheung & Li, Yuan, 2001. "Detection of jumps by wavelets in a heteroscedastic autoregressive model," Statistics & Probability Letters, Elsevier, vol. 52(4), pages 365-372, May.
  • Handle: RePEc:eee:stapro:v:52:y:2001:i:4:p:365-372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00218-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aggarwal, Reena & Inclan, Carla & Leal, Ricardo, 1999. "Volatility in Emerging Stock Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(01), pages 33-55, March.
    2. Li, Yuan & Xie, Zhongjie, 1997. "The wavelet detection of hidden periodicities in time series," Statistics & Probability Letters, Elsevier, vol. 35(1), pages 9-23, August.
    3. Li, C W & Li, W K, 1996. "On a Double-Threshold Autoregressive Heteroscedastic Time Series Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 253-274, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujiao Yang & Qiongxia Song, 2014. "Jump detection in time series nonparametric regression models: a polynomial spline approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 325-344, April.
    2. Chen, Gongmeng & Choi, Yoon K. & Zhou, Yong, 2005. "Nonparametric estimation of structural change points in volatility models for time series," Journal of Econometrics, Elsevier, vol. 126(1), pages 79-114, May.
    3. Zhou, Yong & Wan, Alan T.K. & Xie, Shangyu & Wang, Xiaojing, 2010. "Wavelet analysis of change-points in a non-parametric regression with heteroscedastic variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 183-201, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:52:y:2001:i:4:p:365-372. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.