IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v100y2015icp98-103.html
   My bibliography  Save this article

Sequential change point detection in linear quantile regression models

Author

Listed:
  • Zhou, Mi
  • Wang, Huixia Judy
  • Tang, Yanlin

Abstract

We develop a method for sequential detection of structural changes in linear quantile regression models. We establish the asymptotic properties of the proposed test statistic, and demonstrate the advantages of the proposed method over existing tests through simulation.

Suggested Citation

  • Zhou, Mi & Wang, Huixia Judy & Tang, Yanlin, 2015. "Sequential change point detection in linear quantile regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 98-103.
  • Handle: RePEc:eee:stapro:v:100:y:2015:i:c:p:98-103
    DOI: 10.1016/j.spl.2015.01.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215000371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.01.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Liangjun & Xiao, Zhijie, 2008. "Testing for parameter stability in quantile regression models," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2768-2775, November.
    2. Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.
    3. Marilena Furno, 2012. "Tests for structural break in quantile regressions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 493-515, October.
    4. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    5. Chochola, Ondřej & Hušková, Marie & Prášková, Zuzana & Steinebach, Josef G., 2013. "Robust monitoring of CAPM portfolio betas," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 374-395.
    6. Bai, Jushan, 1996. "Testing for Parameter Constancy in Linear Regressions: An Empirical Distribution Function Approach," Econometrica, Econometric Society, vol. 64(3), pages 597-622, May.
    7. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    8. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    9. Marie Hušková & Claudia Kirch, 2012. "Bootstrapping sequential change-point tests for linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 673-708, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriela Ciuperca, 2018. "Test by adaptive LASSO quantile method for real-time detection of a change-point," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 689-720, August.
    2. Liu, Weiqiang, 2023. "A consistent nonparametric test for the structure change in quantile regression," Economics Letters, Elsevier, vol. 228(C).
    3. Gabriela Ciuperca, 2022. "Real-time detection of a change-point in a linear expectile model," Statistical Papers, Springer, vol. 63(4), pages 1323-1367, August.
    4. Muhammad Rizwan Khan & Biswajit Sarkar, 2019. "Change Point Detection for Airborne Particulate Matter ( PM 2.5 , PM 10 ) by Using the Bayesian Approach," Mathematics, MDPI, vol. 7(5), pages 1-42, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    2. Marilena Furno, 2021. "Cointegration tests at the quantiles," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1087-1100, January.
    3. Alexander Aue & Rex C. Y. Cheung & Thomas C. M. Lee & Ming Zhong, 2014. "Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1241-1256, September.
    4. Tang, Yanlin & Song, Xinyuan & Zhu, Zhongyi, 2015. "Threshold effect test in censored quantile regression," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 149-156.
    5. Liwen Zhang & Huixia Judy Wang & Zhongyi Zhu, 2017. "Composite change point estimation for bent line quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 145-168, February.
    6. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    7. Christian Bauer & Sebastian Weber, 2016. "The Efficiency of Monetary Policy when Guiding Inflation Expectations," Research Papers in Economics 2016-14, University of Trier, Department of Economics.
    8. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy & Wohar, Mark E., 2018. "Do house prices hedge inflation in the US? A quantile cointegration approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 15-26.
    9. Marilena Furno, 2012. "Tests for structural break in quantile regressions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 493-515, October.
    10. Zhang, Feipeng & Li, Qunhua, 2017. "A continuous threshold expectile model," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 49-66.
    11. Wolters Maik H. & Tillmann Peter, 2015. "The changing dynamics of US inflation persistence: a quantile regression approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 161-182, April.
    12. Kuriyama Nina, 2016. "Testing cointegration in quantile regressions with an application to the term structure of interest rates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 107-121, April.
    13. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    14. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    15. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    16. Galvao Jr., Antonio F., 2009. "Unit root quantile autoregression testing using covariates," Journal of Econometrics, Elsevier, vol. 152(2), pages 165-178, October.
    17. Wolters, Maik H., 2012. "Estimating monetary policy reaction functions using quantile regressions," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 342-361.
    18. Zeng, Zijian & Li, Meng, 2021. "Bayesian median autoregression for robust time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1000-1010.
    19. Chung-Ming Kuan & Christos Michalopoulos & Zhijie Xiao, 2017. "Quantile Regression on Quantile Ranges – A Threshold Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 99-119, January.
    20. Rangan Gupta & Charl Jooste & Omid Ranjbar, 2017. "South Africa’s inflation persistence: a quantile regression framework," Economic Change and Restructuring, Springer, vol. 50(4), pages 367-386, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:100:y:2015:i:c:p:98-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.