IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Statistical estimation of nonstationary Gaussian processes with long-range dependence and intermittency

  • Gao, Jiti
  • Anh, Vo
  • Heyde, Chris
Registered author(s):

This paper considers statistical inference for nonstationary Gaussian processes with long-range dependence and intermittency. The existence of such a process has been established by Anh et al. (J. Statist. Plann. Inference 80 (1999) 95-110). We systematically consider the case where the spectral density of nonstationary Gaussian processes with stationary increments is of a general and flexible form. The spectral density function of fRBm is thus a special case of this general form. A continuous version of the Gauss-Whittle objective function is proposed. Estimation procedures for the parameters involved in the spectral density function are then investigated. Both the consistency and the asymptotic normality of the estimators of the parameters are established. In addition, a real example is presented to demonstrate the applicability of the estimation procedures.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V1B-45C03TG-1/2/ae403b9639c081f11795e93d95178a62
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Stochastic Processes and their Applications.

Volume (Year): 99 (2002)
Issue (Month): 2 (June)
Pages: 295-321

as
in new window

Handle: RePEc:eee:spapps:v:99:y:2002:i:2:p:295-321
Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description

Order Information: Postal: http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/OOC/InitController?id=505572&ref=505572_01_ooc_1&version=01

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
  2. Heyde, C. C. & Gay, R., 1993. "Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 45(1), pages 169-182, March.
  3. Viano, M. C. & Deniau, C. & Oppenheim, G., 1994. "Continuous-time fractional ARMA processes," Statistics & Probability Letters, Elsevier, vol. 21(4), pages 323-336, November.
  4. Peter M. Robinson, 1997. "Large-sample inference for nonparametric regression with dependent errors," LSE Research Online Documents on Economics 302, London School of Economics and Political Science, LSE Library.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:99:y:2002:i:2:p:295-321. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.