IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v78y2008i2p335-340.html
   My bibliography  Save this article

Estimation of stochastic volatility with LRD

Author

Listed:
  • Casas, Isabel

Abstract

Understanding the behaviour of market prices is not simple. Stock market prices tend to have complicated distributions with strong skewness and fat tails. One important step in forecasting tomorrow’s price is to estimate the volatility, i.e. how much tomorrow’s price is expected to differ from today’s price. In this paper the volatility is assumed to be a lognormal random process and in addition, it may display long-range dependence (LRD). The aim is to obtain the estimates of the mean, standard deviation and LRD parameter of the volatility process of the S&P 500.

Suggested Citation

  • Casas, Isabel, 2008. "Estimation of stochastic volatility with LRD," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 335-340.
  • Handle: RePEc:eee:matcom:v:78:y:2008:i:2:p:335-340
    DOI: 10.1016/j.matcom.2008.01.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475408000451
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous-time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323.
    3. Gao, Jiti & Anh, Vo & Heyde, Chris, 2002. "Statistical estimation of nonstationary Gaussian processes with long-range dependence and intermittency," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 295-321, June.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    5. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    6. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    7. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    8. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:78:y:2008:i:2:p:335-340. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.