IDEAS home Printed from
   My bibliography  Save this article

Time discretization and quantization methods for optimal multiple switching problem


  • Gassiat, Paul
  • Kharroubi, Idris
  • Pham, Huyên


In this paper, we study probabilistic numerical methods based on optimal quantization algorithms for computing the solution to optimal multiple switching problems with regime-dependent state process. We first consider a discrete-time approximation of the optimal switching problem, and analyse its rate of convergence. Given a time step h, the error is in general of order (hlog(1/h))1/2, and of order h1/2 when the switching costs do not depend on the state process. We next propose quantization numerical schemes for the space discretization of the discrete-time Euler state process. A Markovian quantization approach relying on the optimal quantization of the normal distribution arising in the Euler scheme is analysed. In the particular case of uncontrolled state process, we describe an alternative marginal quantization method, which extends the recursive algorithm for optimal stopping problems as in Bally (2003) [1]. A priori Lp-error estimates are stated in terms of quantization errors. Finally, some numerical tests are performed for an optimal switching problem with two regimes.

Suggested Citation

  • Gassiat, Paul & Kharroubi, Idris & Pham, Huyên, 2012. "Time discretization and quantization methods for optimal multiple switching problem," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2019-2052.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:5:p:2019-2052
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. René Carmona & Michael Ludkovski, 2008. "Pricing Asset Scheduling Flexibility using Optimal Switching," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 405-447.
    2. Bally, Vlad & Pagès, Gilles, 2003. "Error analysis of the optimal quantization algorithm for obstacle problems," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 1-40, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Li Kai & Nyström Kaj & Olofsson Marcus, 2015. "Optimal switching problems under partial information," Monte Carlo Methods and Applications, De Gruyter, vol. 21(2), pages 91-120, June.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:5:p:2019-2052. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.