IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Time discretization and quantization methods for optimal multiple switching problem

Listed author(s):
  • Gassiat, Paul
  • Kharroubi, Idris
  • Pham, Huyên
Registered author(s):

    In this paper, we study probabilistic numerical methods based on optimal quantization algorithms for computing the solution to optimal multiple switching problems with regime-dependent state process. We first consider a discrete-time approximation of the optimal switching problem, and analyse its rate of convergence. Given a time step h, the error is in general of order (hlog(1/h))1/2, and of order h1/2 when the switching costs do not depend on the state process. We next propose quantization numerical schemes for the space discretization of the discrete-time Euler state process. A Markovian quantization approach relying on the optimal quantization of the normal distribution arising in the Euler scheme is analysed. In the particular case of uncontrolled state process, we describe an alternative marginal quantization method, which extends the recursive algorithm for optimal stopping problems as in Bally (2003) [1]. A priori Lp-error estimates are stated in terms of quantization errors. Finally, some numerical tests are performed for an optimal switching problem with two regimes.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 122 (2012)
    Issue (Month): 5 ()
    Pages: 2019-2052

    in new window

    Handle: RePEc:eee:spapps:v:122:y:2012:i:5:p:2019-2052
    DOI: 10.1016/
    Contact details of provider: Web page:

    Order Information: Postal: http://

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Rene Carmona & Michael Ludkovski, 2008. "Pricing Asset Scheduling Flexibility using Optimal Switching," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 405-447.
    2. Bally, Vlad & Pagès, Gilles, 2003. "Error analysis of the optimal quantization algorithm for obstacle problems," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 1-40, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:5:p:2019-2052. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.