IDEAS home Printed from
   My bibliography  Save this article

Estimation for the change point of volatility in a stochastic differential equation


  • Iacus, Stefano M.
  • Yoshida, Nakahiro


We consider a multidimensional Itô process Y=(Yt)t∈[0,T] with some unknown drift coefficient process bt and volatility coefficient σ(Xt,θ) with covariate process X=(Xt)t∈[0,T], the function σ(x,θ) being known up to θ∈Θ. For this model, we consider a change point problem for the parameter θ in the volatility component. The change is supposed to occur at some point t∗∈(0,T). Given discrete time observations from the process (X,Y), we propose quasi-maximum likelihood estimation of the change point. We present the rate of convergence of the change point estimator and the limit theorems of the asymptotically mixed type.

Suggested Citation

  • Iacus, Stefano M. & Yoshida, Nakahiro, 2012. "Estimation for the change point of volatility in a stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1068-1092.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:3:p:1068-1092
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    3. Sangyeol Lee & Yoichi Nishiyama & Nakahiro Yoshida, 2006. "Test for Parameter Change in Diffusion Processes by Cusum Statistics Based on One-step Estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 211-222, June.
    4. Junmo Song & Sangyeol Lee, 2009. "Test for parameter change in discretely observed diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 12(2), pages 165-183, June.
    5. Chen, Gongmeng & Choi, Yoon K. & Zhou, Yong, 2005. "Nonparametric estimation of structural change points in volatility models for time series," Journal of Econometrics, Elsevier, vol. 126(1), pages 79-114, May.
    6. Stefano M. Iacus & Nakahiro Yoshida, 2010. "Numerical Analysis of Volatility Change Point Estimators for Discretely Sampled Stochastic Differential Equations," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(s1), pages 107-127, February.
    7. Shixin, Gan, 1997. "The Hájek-Rényi inequality for Banach space valued martingales and the p smoothness of Banach spaces," Statistics & Probability Letters, Elsevier, vol. 32(3), pages 245-248, March.
    8. Sangyeol Lee & Jeongcheol Ha & Okyoung Na & Seongryong Na, 2003. "The Cusum Test for Parameter Change in Time Series Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 781-796.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Markus Bibinger & Moritz Jirak & Mathias Vetter, 2015. "Nonparametric change-point analysis of volatility," SFB 649 Discussion Papers SFB649DP2015-008, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:3:p:1068-1092. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.