IDEAS home Printed from https://ideas.repec.org/a/bla/ecnote/v39y2010i1-2p107-127.html
   My bibliography  Save this article

Numerical Analysis of Volatility Change Point Estimators for Discretely Sampled Stochastic Differential Equations

Author

Listed:
  • Stefano M. Iacus
  • Nakahiro Yoshida

Abstract

In this paper, we review recent advances on change point estimation for the volatility component of stochastic differential equations under different discrete sampling schemes. We consider both ergodic and non‐ergodic cases, and present a Monte Carlo study on the change point estimator to compare the three methods under different setups.

Suggested Citation

  • Stefano M. Iacus & Nakahiro Yoshida, 2010. "Numerical Analysis of Volatility Change Point Estimators for Discretely Sampled Stochastic Differential Equations," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 107-127, February.
  • Handle: RePEc:bla:ecnote:v:39:y:2010:i:1-2:p:107-127
    DOI: 10.1111/j.1468-0300.2010.00224.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1468-0300.2010.00224.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1468-0300.2010.00224.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Jushan Bai, 1994. "Least Squares Estimation Of A Shift In Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 453-472, September.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    5. Iacus, Stefano M. & Yoshida, Nakahiro, 2012. "Estimation for the change point of volatility in a stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1068-1092.
    6. Sangyeol Lee & Yoichi Nishiyama & Nakahiro Yoshida, 2006. "Test for Parameter Change in Diffusion Processes by Cusum Statistics Based on One-step Estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 211-222, June.
    7. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    8. Junmo Song & Sangyeol Lee, 2009. "Test for parameter change in discretely observed diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 12(2), pages 165-183, June.
    9. Chen, Gongmeng & Choi, Yoon K. & Zhou, Yong, 2005. "Nonparametric estimation of structural change points in volatility models for time series," Journal of Econometrics, Elsevier, vol. 126(1), pages 79-114, May.
    10. Sangyeol Lee & Jeongcheol Ha & Okyoung Na & Seongryong Na, 2003. "The Cusum Test for Parameter Change in Time Series Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 781-796, December.
    11. Stanton, Richard, 1997. "A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1973-2002, December.
    12. Stefano Maria IACUS & Nakahiro YOSHIDA, 2009. "Estimation for the change point of the volatility in a stochastic differential equation," Departmental Working Papers 2009-49, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iacus, Stefano M. & Yoshida, Nakahiro, 2012. "Estimation for the change point of volatility in a stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1068-1092.
    2. Ozer-Imer, Itir & Ozkan, Ibrahim, 2014. "An empirical analysis of currency volatilities during the recent global financial crisis," Economic Modelling, Elsevier, vol. 43(C), pages 394-406.
    3. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Mar 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iacus, Stefano M. & Yoshida, Nakahiro, 2012. "Estimation for the change point of volatility in a stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1068-1092.
    2. Stefano Maria IACUS & Nakahiro YOSHIDA, 2009. "Estimation for the change point of the volatility in a stochastic differential equation," Departmental Working Papers 2009-49, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    3. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, June.
    4. Ruijun Bu & Fredj Jawadi & Yuyi Li, 2020. "A multifactor transformed diffusion model with applications to VIX and VIX futures," Econometric Reviews, Taylor & Francis Journals, vol. 39(1), pages 27-53, January.
    5. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    6. Zhang, Shulin & Song, Peter X.-K. & Shi, Daimin & Zhou, Qian M., 2012. "Information ratio test for model misspecification on parametric structures in stochastic diffusion models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3975-3987.
    7. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    8. Lioui, Abraham & Poncet, Patrice, 2004. "General equilibrium real and nominal interest rates," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1569-1595, July.
    9. Bu, Ruijun & Cheng, Jie & Hadri, Kaddour, 2016. "Reducible diffusions with time-varying transformations with application to short-term interest rates," Economic Modelling, Elsevier, vol. 52(PA), pages 266-277.
    10. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    11. Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
    12. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    13. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    14. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.
    15. Fan J. & Zhang C., 2003. "A Reexamination of Diffusion Estimators With Applications to Financial Model Validation," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 118-134, January.
    16. D H Kim, 2004. "Nonlinearity in the Term Structure," Economics Discussion Paper Series 0401, Economics, The University of Manchester.
    17. Choi Seungmoon, 2009. "Regime-Switching Univariate Diffusion Models of the Short-Term Interest Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-41, March.
    18. Kristensen, Dennis, 2004. "Estimation in two classes of semiparametric diffusion models," LSE Research Online Documents on Economics 24739, London School of Economics and Political Science, LSE Library.
    19. Alessandro De Gregorio & Stefano M. Iacus, 2007. "Change point estimation for the telegraph process observed at discrete times," Papers 0705.0503, arXiv.org.
    20. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecnote:v:39:y:2010:i:1-2:p:107-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0391-5026 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.