IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v116y2006i12p1770-1791.html
   My bibliography  Save this article

The Wiener disorder problem with finite horizon

Author

Listed:
  • Gapeev, P.V.
  • Peskir, G.

Abstract

The Wiener disorder problem seeks to determine a stopping time which is as close as possible to the (unknown) time of 'disorder' when the drift of an observed Wiener process changes from one value to another. In this paper we present a solution of the Wiener disorder problem when the horizon is finite. The method of proof is based on reducing the initial problem to a parabolic free-boundary problem where the continuation region is determined by a continuous curved boundary. By means of the change-of-variable formula containing the local time of a diffusion process on curves we show that the optimal boundary can be characterized as a unique solution of the nonlinear integral equation.

Suggested Citation

  • Gapeev, P.V. & Peskir, G., 2006. "The Wiener disorder problem with finite horizon," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1770-1791, December.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:12:p:1770-1791
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00047-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14.
    2. Goran Peskir, 2005. "The Russian option: Finite horizon," Finance and Stochastics, Springer, vol. 9(2), pages 251-267, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel V. Gapeev, 2006. "Discounted Optimal Stopping for Maxima in Diffusion Models with Finite Horizon," SFB 649 Discussion Papers SFB649DP2006-057, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Denis Belomestny & Pavel V. Gapeev, 2006. "An Iteration Procedure for Solving Integral Equations Related to Optimal Stopping Problems," SFB 649 Discussion Papers SFB649DP2006-043, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Pavel V. Gapeev, 2006. "Integral Options in Models with Jumps," SFB 649 Discussion Papers SFB649DP2006-068, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:12:p:1770-1791. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.