IDEAS home Printed from
   My bibliography  Save this article

The Russian option: Finite horizon


  • Goran Peskir



We show that the optimal stopping boundary for the Russian option with finite horizon can be characterized as the unique solution of a nonlinear integral equation arising from the early exercise premium representation (an explicit formula for the arbitrage-free price in terms of the optimal stopping boundary having a clear economic interpretation). The results obtained stand in a complete parallel with the best known results on the American put option with finite horizon. The key argument in the proof relies upon a local time-space formula. Copyright Springer-Verlag Berlin/Heidelberg 2005

Suggested Citation

  • Goran Peskir, 2005. "The Russian option: Finite horizon," Finance and Stochastics, Springer, vol. 9(2), pages 251-267, April.
  • Handle: RePEc:spr:finsto:v:9:y:2005:i:2:p:251-267
    DOI: 10.1007/s00780-004-0133-8

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Wissel, Johannes, 2007. "Some results on strong solutions of SDEs with applications to interest rate models," Stochastic Processes and their Applications, Elsevier, vol. 117(6), pages 720-741, June.
    2. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    3. H. Berestycki & J. Busca & I. Florent, 2002. "Asymptotics and calibration of local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 61-69.
    4. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    5. Brace, Alan & Fabbri, Giorgio & Goldys, Benjamin, 2007. "An Hilbert space approach for a class of arbitrage free implied volatilities models," MPRA Paper 6321, University Library of Munich, Germany.
    6. Ledoit, Olivier & Santa-Clara, Pedro & Yan, Shu, 2002. "Relative Pricing of Options with Stochastic Volatility," University of California at Los Angeles, Anderson Graduate School of Management qt7jp8f42t, Anderson Graduate School of Management, UCLA.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    8. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    9. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Martin Schweizer & Johannes Wissel, 2008. "Term Structures Of Implied Volatilities: Absence Of Arbitrage And Existence Results," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 77-114.
    12. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kimura, Toshikazu, 2008. "Valuing finite-lived Russian options," European Journal of Operational Research, Elsevier, vol. 189(2), pages 363-374, September.
    2. Yerkin Kitapbayev, 2015. "The British Lookback Option with Fixed Strike," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(3), pages 238-260, July.
    3. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    4. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655,, revised Nov 2017.
    5. Gapeev, P.V. & Peskir, G., 2006. "The Wiener disorder problem with finite horizon," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1770-1791, December.
    6. Duistermaat, J.J. & Kyprianou, A.E. & van Schaik, K., 2005. "Finite expiry Russian options," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 609-638, April.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:9:y:2005:i:2:p:251-267. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.