IDEAS home Printed from
   My bibliography  Save this article

Finite expiry Russian options


  • Duistermaat, J.J.
  • Kyprianou, A.E.
  • van Schaik, K.


We consider the Russian option introduced by Shepp and Shiryayev (Ann. Appl. Probab. 3 (1993) 631, Theory Probab. Appl. 39 (1995) 103) but with finite expiry and show that its space-time value function characterizes the unique solution to a free boundary problem. Further, using a method of randomization (or Canadization) due to Carr (Rev. Financ. Stud. 11 (1998) 597) we produce a numerical algorithm for solving the aforementioned free boundary problem.

Suggested Citation

  • Duistermaat, J.J. & Kyprianou, A.E. & van Schaik, K., 2005. "Finite expiry Russian options," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 609-638, April.
  • Handle: RePEc:eee:spapps:v:115:y:2005:i:4:p:609-638

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Carr, Peter, 1998. "Randomization and the American Put," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    2. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    3. Goran Peskir, 2005. "On The American Option Problem," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 169-181.
    4. Goran Peskir, 2005. "The Russian option: Finite horizon," Finance and Stochastics, Springer, vol. 9(2), pages 251-267, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Eisenbaum, Nathalie, 2006. "Local time-space stochastic calculus for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 757-778, May.
    2. Kimura, Toshikazu, 2008. "Valuing finite-lived Russian options," European Journal of Operational Research, Elsevier, vol. 189(2), pages 363-374, September.
    3. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655,, revised Nov 2017.
    4. Pavel V. Gapeev, 2006. "Discounted Optimal Stopping for Maxima of some Jump-Diffusion Processes," SFB 649 Discussion Papers SFB649DP2006-059, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:115:y:2005:i:4:p:609-638. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.