IDEAS home Printed from
   My bibliography  Save this article

Asymptotics of regressions with stationary and nonstationary residuals


  • Maller, R. A.


A comprehensive description is given of the limiting behaviour of normalised pseudo-MLEs of the coefficients in a discrete-time autoregressive process, with nonstochastic regressors, for all cases: stationary, unit root and explosive situations. The residuals are assumed to be independent and identically distributed, with finite variance, and we allow a wide class of regressors: they need only be uniformly asymptotically negligible and not too regular, in a certain sense. Under these assumptions, the normalised estimator of the regression coefficient is shown to be asymptotically normal, regardless of the value of the autocorrelation coefficient, and asymptotically independent of the normalised estimator of the autocorrelation coefficient, which also has a proper, nondegenerate limiting distribution. The normalisation for the estimators can be based on the sample information matrix. Limiting distributions for likelihood ratio test statistics of hypotheses of interest are also given under the same assumptions.

Suggested Citation

  • Maller, R. A., 2003. "Asymptotics of regressions with stationary and nonstationary residuals," Stochastic Processes and their Applications, Elsevier, vol. 105(1), pages 33-67, May.
  • Handle: RePEc:eee:spapps:v:105:y:2003:i:1:p:33-67

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Maller, R. A., 1993. "Quadratic Negligibility and the Asymptotic Normality of Operator Normed Sums," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 191-219, February.
    2. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    3. Datta, Somnath, 1995. "Limit theory and bootstrap for explosive and partially explosive autoregression," Stochastic Processes and their Applications, Elsevier, vol. 57(2), pages 285-304, June.
    4. Davis, Richard A. & Mikosch, Thomas, 1998. "Gaussian likelihood-based inference for non-invertible MA(1) processes with SS noise," Stochastic Processes and their Applications, Elsevier, vol. 77(1), pages 99-122, September.
    5. Monsour, Michael J. & Mikulski, Piotr W., 1998. "On limiting distributions in explosive autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 37(2), pages 141-147, February.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:105:y:2003:i:1:p:33-67. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.