IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v98y2018icp92-107.html
   My bibliography  Save this article

Water vapor compression and its various applications

Author

Listed:
  • Hu, Bin
  • Wu, Di
  • Wang, R.Z.

Abstract

From the view of environment protection, water refrigerant can completely satisfy the requirements of the energy-saving and emission-reduction. Currently, centrifugal, roots and screw compressor are three main kinds of water vapor compressors. Centrifugal water vapor compressor has the advantage of larger volume flow rate, but it has smaller single stage compression ratio, high discharge temperature, droplet sensitivity and severe and expensive blade materials. The largest volume flow rate and smallest compression ratio system is more suitable application field for centrifugal water vapor compressor. Roots water vapor compressor has the advantages of less vibration components and simple structure. However, it also has smaller compression ratio compared with screw water vapor compressor, which results in that it is usually used in the small volume flow rate, medium heating capacity and temperature rise systems. Screw water vapor compressor has the advantages of good stability, larger compression ratio and wet compression; however its volume flow rate is not very large. It is more suitable for the refrigeration system with medium and smaller volume flow rate and larger compression ratio.

Suggested Citation

  • Hu, Bin & Wu, Di & Wang, R.Z., 2018. "Water vapor compression and its various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 92-107.
  • Handle: RePEc:eee:rensus:v:98:y:2018:i:c:p:92-107
    DOI: 10.1016/j.rser.2018.08.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118306348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.08.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
    2. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    3. Li, Qubo & Piechna, Janusz & Müller, Norbert, 2011. "Design of a novel axial impeller as a part of counter-rotating axial compressor to compress water vapor as refrigerant," Applied Energy, Elsevier, vol. 88(9), pages 3156-3168.
    4. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    5. Han, D. & He, W.F. & Yue, C. & Pu, W.H., 2017. "Study on desalination of zero-emission system based on mechanical vapor compression," Applied Energy, Elsevier, vol. 185(P2), pages 1490-1496.
    6. Chen, Xiangjie & Omer, Siddig & Worall, Mark & Riffat, Saffa, 2013. "Recent developments in ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 629-651.
    7. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    8. Chen, Jianyong & Jarall, Sad & Havtun, Hans & Palm, Björn, 2015. "A review on versatile ejector applications in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 67-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Yafen & Geng, Yanting & Yuan, Hao & Zhao, Zhaorui, 2022. "Investigation on water injection characteristics and its influence on the performance of twin-screw steam compressor," Energy, Elsevier, vol. 259(C).
    2. A. A. Avramenko & I. V. Shevchuk & Yu. Yu. Kovetskaya & N. P. Dmitrenko, 2021. "An Integral Method for Natural Convection of Van Der Waals Gases over a Vertical Plate," Energies, MDPI, vol. 14(15), pages 1-12, July.
    3. Jiang, L. & Wang, R.Q. & Tao, X. & Roskilly, A.P., 2020. "A hybrid resorption-compression heat transformer for energy storage and upgrade with a large temperature lift," Applied Energy, Elsevier, vol. 280(C).
    4. Yin, Haoyu & Wu, Hong & Li, Yulong & Quan, Jin, 2020. "Performance analysis of the water-injected centrifugal vapor compressor," Energy, Elsevier, vol. 200(C).
    5. Wu, Di & Jiang, Jiatong & Hu, Bin & Wang, R.Z., 2020. "Experimental investigation on the performance of a very high temperature heat pump with water refrigerant," Energy, Elsevier, vol. 190(C).
    6. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Yan, Hongzhi & Hu, Bin & Wang, Ruzhu, 2021. "Air-source heat pump heating based water vapor compression for localized steam sterilization applications during the COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Ding, Zhixiong & Wu, Wei & Huang, Si-Min & Huang, Hongyu & Bai, Yu & He, Zhaohong, 2023. "A novel compression-assisted energy storage heat transformer for low-grade renewable energy utilization," Energy, Elsevier, vol. 263(PA).
    10. Pan Zhang & Xiwei Ke & Weiliang Wang & Xueyu Tang & Junfu Lyu & Qinghong Tang, 2023. "Study on the Selection of Single-Screw Steam Compressors in Industrial Steam Supply," Energies, MDPI, vol. 16(10), pages 1-15, May.
    11. Ding, Zhixiong & Wu, Wei, 2022. "A novel double-effect compression-assisted absorption thermal battery with high storage performance for thermal energy storage," Renewable Energy, Elsevier, vol. 191(C), pages 902-918.
    12. Zhang, Huafu & Tong, Lige & Zhang, Zhentao & Song, Yanchang & Yang, Junling & Yue, Yunkai & Wu, Zhenqun & Wang, Youdong & Yu, Ze & Zhang, Junhao, 2023. "A integrated mechanical vapor compression enrichment system of radioactive wastewater: Experimental study, model optimization and performance prediction," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    2. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    3. Elnagar, Essam & Zeoli, Alanis & Rahif, Ramin & Attia, Shady & Lemort, Vincent, 2023. "A qualitative assessment of integrated active cooling systems: A review with a focus on system flexibility and climate resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    4. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.
    5. Liu, Bo & Guo, Xiangji & Xi, Xiuzhi & Sun, Jianhua & Zhang, Bo & Yang, Zhuqiang, 2023. "Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture," Energy, Elsevier, vol. 263(PD).
    6. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    7. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Zhu, Jingwei & Botticella, Francesco & Elbel, Stefan, 2018. "Experimental investigation and theoretical analysis of oil circulation rates in ejector cooling cycles," Energy, Elsevier, vol. 157(C), pages 718-733.
    9. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    10. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    11. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    12. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    13. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    14. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    15. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    16. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Azadeh, A. & Babazadeh, R. & Asadzadeh, S.M., 2013. "Optimum estimation and forecasting of renewable energy consumption by artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 605-612.
    19. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    20. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:98:y:2018:i:c:p:92-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.