IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v73y2017icp1138-1159.html
   My bibliography  Save this article

Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review

Author

Listed:
  • Ram, J.Prasanth
  • Rajasekar, N.
  • Miyatake, Masafumi

Abstract

Increased penetration of wind and solar PV system in Distributed Generation (DG) and isolated micro grid environment necessitates the use of maximum power point tracking method for wind and solar PV resources. Considering the change in environmental conditions and non-linearity, a variety of publications reporting various MPPT algorithms for solar and wind energy systems are put forward in recent times. But the review reports on common MPPT techniques used for solar and wind applications for hybrid power generation have not yet been reported. Hence, in this paper, conventional techniques and artificial intelligent techniques found extensively used in the power generation platform are peerly reviewed and compared. Historical MPPT methods like Perturb & Observe (P&O) / Hill Climbing, Incremental Conductance (INC), Fuzzy and Neural Network methods benchmarked in MPPT province are comprehensively compared in a common platform. In addition to the common existing techniques, recent swarm intelligence and bio-inspired techniques in solar PV and sensor less adaptive techniques in wind MPPT are also been reviewed provided for quality assessment. Finally an economic analysis is arrived for MPPT methods based on (i) Capacity utilization factor (ii) Cost (iii) Energy Savings (iv) payback period (v) Income generated and (vi) stability.

Suggested Citation

  • Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
  • Handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:1138-1159
    DOI: 10.1016/j.rser.2017.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117302137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    2. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    3. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    4. Gounden, N. Ammasai & Ann Peter, Sabitha & Nallandula, Himaja & Krithiga, S., 2009. "Fuzzy logic controller with MPPT using line-commutated inverter for three-phase grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 34(3), pages 909-915.
    5. Mohamed, Amal Z. & Eskander, Mona N. & Ghali, Fadia A., 2001. "Fuzzy logic control based maximum power tracking of a wind energy system," Renewable Energy, Elsevier, vol. 23(2), pages 235-245.
    6. Harrag, Abdelghani & Messalti, Sabir, 2015. "Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1247-1260.
    7. Ishaque, Kashif & Salam, Zainal & Lauss, George, 2014. "The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions," Applied Energy, Elsevier, vol. 119(C), pages 228-236.
    8. Kortabarria, Iñigo & Andreu, Jon & Martínez de Alegría, Iñigo & Jiménez, Jaime & Gárate, José Ignacio & Robles, Eider, 2014. "A novel adaptative maximum power point tracking algorithm for small wind turbines," Renewable Energy, Elsevier, vol. 63(C), pages 785-796.
    9. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    10. Farhat, Maissa & Barambones, Oscar & Sbita, Lassaâd, 2015. "Efficiency optimization of a DSP-based standalone PV system using a stable single input fuzzy logic controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 907-920.
    11. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    12. Sivakumar, P. & Abdul Kader, Abdullah & Kaliavaradhan, Yogeshraj & Arutchelvi, M., 2015. "Analysis and enhancement of PV efficiency with incremental conductance MPPT technique under non-linear loading conditions," Renewable Energy, Elsevier, vol. 81(C), pages 543-550.
    13. Urtasun, Andoni & Sanchis, Pablo & San Martín, Idoia & López, Jesús & Marroyo, Luis, 2013. "Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking," Renewable Energy, Elsevier, vol. 55(C), pages 138-149.
    14. Kesraoui, M. & Korichi, N. & Belkadi, A., 2011. "Maximum power point tracker of wind energy conversion system," Renewable Energy, Elsevier, vol. 36(10), pages 2655-2662.
    15. Boumaaraf, Houria & Talha, Abdelaziz & Bouhali, Omar, 2015. "A three-phase NPC grid-connected inverter for photovoltaic applications using neural network MPPT," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1171-1179.
    16. Reza Reisi, Ali & Hassan Moradi, Mohammad & Jamasb, Shahriar, 2013. "Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 433-443.
    17. Kadri, Riad & Andrei, Horia & Gaubert, Jean-Paul & Ivanovici, Traian & Champenois, Gérard & Andrei, Paul, 2012. "Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions," Energy, Elsevier, vol. 42(1), pages 57-67.
    18. Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.
    19. Ahmed, Jubaer & Salam, Zainal, 2015. "An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency," Applied Energy, Elsevier, vol. 150(C), pages 97-108.
    20. Eltawil, Mohamed A. & Zhao, Zhengming, 2013. "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 793-813.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    3. Ram, J. Prasanth & Manghani, Himanshu & Pillai, Dhanup S. & Babu, T. Sudhakar & Miyatake, Masafumi & Rajasekar, N., 2018. "Analysis on solar PV emulators: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 149-160.
    4. Aliyu Sabo & Bashir Yunus Kolapo & Theophilus Ebuka Odoh & Musa Dyari & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy, 2022. "Solar, Wind and Their Hybridization Integration for Multi-Machine Power System Oscillation Controllers Optimization: A Review," Energies, MDPI, vol. 16(1), pages 1-32, December.
    5. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    6. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
    7. Mariam A. Sameh & Mostafa I. Marei & M. A. Badr & Mahmoud A. Attia, 2021. "An Optimized PV Control System Based on the Emperor Penguin Optimizer," Energies, MDPI, vol. 14(3), pages 1-16, February.
    8. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    9. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    10. J. Prasanth Ram & Dhanup S. Pillai & Ye-Eun Jang & Young-Jin Kim, 2022. "Reconfigured Photovoltaic Model to Facilitate Maximum Power Point Tracking for Micro and Nano-Grid Systems," Energies, MDPI, vol. 15(23), pages 1-16, November.
    11. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    12. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    13. Prasanth Ram, J. & Rajasekar, N., 2017. "A new robust, mutated and fast tracking LPSO method for solar PV maximum power point tracking under partial shaded conditions," Applied Energy, Elsevier, vol. 201(C), pages 45-59.
    14. Song, Dongran & Liu, Junbo & Yang, Yinggang & Yang, Jian & Su, Mei & Wang, Yun & Gui, Ning & Yang, Xuebing & Huang, Lingxiang & Hoon Joo, Young, 2021. "Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm," Energy, Elsevier, vol. 221(C).
    15. Sirine Rabah & Aida Zaier & Jaime Lloret & Hassen Dahman, 2023. "Efficiency Enhancement of a Hybrid Sustainable Energy Harvesting System Using HHHOPSO-MPPT for IoT Devices," Sustainability, MDPI, vol. 15(13), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    2. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    3. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    4. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    5. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    6. Li, Shaowu, 2016. "Linear equivalent models at the maximum power point based on variable weather parameters for photovoltaic cell," Applied Energy, Elsevier, vol. 182(C), pages 94-104.
    7. Nabipour, M. & Razaz, M. & Seifossadat, S.GH & Mortazavi, S.S., 2017. "A new MPPT scheme based on a novel fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1147-1169.
    8. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
    9. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    10. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    11. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2017. "The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system," Applied Energy, Elsevier, vol. 204(C), pages 873-886.
    13. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    14. Hong, Ying-Yi & Beltran, Angelo A. & Paglinawan, Arnold C., 2018. "A robust design of maximum power point tracking using Taguchi method for stand-alone PV system," Applied Energy, Elsevier, vol. 211(C), pages 50-63.
    15. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    16. Kamran Ali Khan Niazi & Yongheng Yang & Mashood Nasir & Dezso Sera, 2019. "Evaluation of Interconnection Configuration Schemes for PV Modules with Switched-Inductor Converters under Partial Shading Conditions," Energies, MDPI, vol. 12(14), pages 1-12, July.
    17. Abrar Ahmed Chhipa & Vinod Kumar & Raghuveer Raj Joshi & Prasun Chakrabarti & Michal Jasinski & Alessandro Burgio & Zbigniew Leonowicz & Elzbieta Jasinska & Rajkumar Soni & Tulika Chakrabarti, 2021. "Adaptive Neuro-Fuzzy Inference System-Based Maximum Power Tracking Controller for Variable Speed WECS," Energies, MDPI, vol. 14(19), pages 1-19, October.
    18. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
    19. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    20. Fathabadi, Hassan, 2016. "Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique," Energy, Elsevier, vol. 113(C), pages 1219-1230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:1138-1159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.