IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v201y2017icp45-59.html
   My bibliography  Save this article

A new robust, mutated and fast tracking LPSO method for solar PV maximum power point tracking under partial shaded conditions

Author

Listed:
  • Prasanth Ram, J.
  • Rajasekar, N.

Abstract

Mounting demand for energy and accumulation of hazardous nuclear wastes has invited the world to reduce their addiction to conventional power generation. Having established its global potential to replace fossil fuels, solar PV is increasingly installed worldwide. Yet PV is ill-starred due to its non-linear characteristics and hence, PV systems employ Maximum Power Point (MPP) controllers. Even though enough research progress is kept at the forefront in the MPP research area, the necessity to improvise the existing methods becomes mandatory to improve the energy conversion efficiency. Hence, in this paper, a global maximum power point tracking (GMPPT) algorithm based on Leader Particle Swarm Optimization (LPSO) is proposed for PV system. Apart from the conventional PSO, exclusive mutations strategies are employed to obtain the global best leader that helps the algorithm to differentiate between local and global MPPs. The simulation results are validated under numerous test conditions in which partial shading conditions are analyzed over a wide extent and in validation, the results of LPSO method is compared with PSO and P&O methods as well. Interestingly LPSO method has an inherent exploration and exploitation quality that made it to produce hasty converge within 0.5s under any shade conditions. Acknowledging to the promise shown in simulation, the mutation based LPSO method has managed to excel even in hardware experimentation which in turn justifies its suitability for MPPT application.

Suggested Citation

  • Prasanth Ram, J. & Rajasekar, N., 2017. "A new robust, mutated and fast tracking LPSO method for solar PV maximum power point tracking under partial shaded conditions," Applied Energy, Elsevier, vol. 201(C), pages 45-59.
  • Handle: RePEc:eee:appene:v:201:y:2017:i:c:p:45-59
    DOI: 10.1016/j.apenergy.2017.05.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917306049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patel, Sanjaykumar J. & Panchal, Ashish K. & Kheraj, Vipul, 2014. "Extraction of solar cell parameters from a single current–voltage characteristic using teaching learning based optimization algorithm," Applied Energy, Elsevier, vol. 119(C), pages 384-393.
    2. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    3. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    4. Sundareswaran, K. & Vignesh kumar, V. & Palani, S., 2015. "Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions," Renewable Energy, Elsevier, vol. 75(C), pages 308-317.
    5. Sandrolini, L. & Artioli, M. & Reggiani, U., 2010. "Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis," Applied Energy, Elsevier, vol. 87(2), pages 442-451, February.
    6. Lin, Chia-Hung & Huang, Cong-Hui & Du, Yi-Chun & Chen, Jian-Liung, 2011. "Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method," Applied Energy, Elsevier, vol. 88(12), pages 4840-4847.
    7. Mamarelis, Emilio & Petrone, Giovanni & Spagnuolo, Giovanni, 2014. "A two-steps algorithm improving the P&O steady state MPPT efficiency," Applied Energy, Elsevier, vol. 113(C), pages 414-421.
    8. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    9. Prasanth Ram, J. & Rajasekar, N., 2017. "A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC)," Energy, Elsevier, vol. 118(C), pages 512-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dalia Yousri & Thanikanti Sudhakar Babu & Dalia Allam & Vigna. K. Ramachandaramurthy & Eman Beshr & Magdy. B. Eteiba, 2019. "Fractional Chaos Maps with Flower Pollination Algorithm for Partial Shading Mitigation of Photovoltaic Systems," Energies, MDPI, vol. 12(18), pages 1-27, September.
    2. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    3. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    4. Hong, Ying-Yi & Beltran, Angelo A. & Paglinawan, Arnold C., 2018. "A robust design of maximum power point tracking using Taguchi method for stand-alone PV system," Applied Energy, Elsevier, vol. 211(C), pages 50-63.
    5. Mohamed Zaghloul-El Masry & Abdallah Mohammed & Fathy Amer & Roaa Mubarak, 2023. "New Hybrid MPPT Technique Including Artificial Intelligence and Traditional Techniques for Extracting the Global Maximum Power from Partially Shaded PV Systems," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    6. Novie Ayub Windarko & Muhammad Nizar Habibi & Bambang Sumantri & Eka Prasetyono & Moh. Zaenal Efendi & Taufik, 2021. "A New MPPT Algorithm for Photovoltaic Power Generation under Uniform and Partial Shading Conditions," Energies, MDPI, vol. 14(2), pages 1-22, January.
    7. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    8. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    9. Pillai, Dhanup S. & Ram, J. Prasanth & Shabunko, Veronika & Kim, Young-Jin, 2021. "A new shade dispersion technique compatible for symmetrical and unsymmetrical photovoltaic (PV) arrays," Energy, Elsevier, vol. 225(C).
    10. Eltamaly, Ali M. & Al-Saud, M.S. & Abokhalil, Ahmed G. & Farh, Hassan M.H., 2020. "Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    3. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    4. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    5. Tingting Pei & Xiaohong Hao & Qun Gu, 2018. "A Novel Global Maximum Power Point Tracking Strategy Based on Modified Flower Pollination Algorithm for Photovoltaic Systems under Non-Uniform Irradiation and Temperature Conditions," Energies, MDPI, vol. 11(10), pages 1-16, October.
    6. Li, Qiyu & Zhao, Shengdun & Wang, Mengqi & Zou, Zhongyue & Wang, Bin & Chen, Qixu, 2017. "An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency," Applied Energy, Elsevier, vol. 195(C), pages 523-537.
    7. Ahmed, Jubaer & Salam, Zainal, 2015. "A critical evaluation on maximum power point tracking methods for partial shading in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 933-953.
    8. Amir, A. & Amir, A. & Selvaraj, J. & Rahim, N.A., 2016. "Study of the MPP tracking algorithms: Focusing the numerical method techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 350-371.
    9. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    10. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    11. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2017. "The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system," Applied Energy, Elsevier, vol. 204(C), pages 873-886.
    12. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    13. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    14. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    15. Ali M. Eltamaly & M. S. Al-Saud & A. G. Abo-Khalil, 2020. "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    16. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    17. Sánchez Reinoso, Carlos R. & Milone, Diego H. & Buitrago, Román H., 2013. "Simulation of photovoltaic centrals with dynamic shading," Applied Energy, Elsevier, vol. 103(C), pages 278-289.
    18. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    19. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    20. Koohi-Kamalі, Sam & Rahim, N.A. & Mokhlis, H. & Tyagi, V.V., 2016. "Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 131-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:201:y:2017:i:c:p:45-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.