IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v119y2014icp384-393.html
   My bibliography  Save this article

Extraction of solar cell parameters from a single current–voltage characteristic using teaching learning based optimization algorithm

Author

Listed:
  • Patel, Sanjaykumar J.
  • Panchal, Ashish K.
  • Kheraj, Vipul

Abstract

The determination of values of solar cell parameters is of great interest for the evaluation of solar cell performance. This paper proposes a simple, efficient and reliable method to extract all five parameters of a solar cell from a single illuminated current–voltage (I–V) characteristic using teaching learning based optimization (TLBO) algorithm. The TLBO is implemented by developing an interactive numerical simulation using LabVIEW as a programming tool. The effectiveness of the algorithm has been validated by applying it to the reported I–V characteristics of different types of solar cells such as silicon, plastic and dye-sensitized solar cells as well as silicon solar module. The obtained values of parameters by the TLBO algorithm are found to be in very good agreement with reported values of parameters. The algorithm is also applied to the experimentally measured I–V characteristics of a silicon solar cell and a silicon solar module for the extraction of parameters. It is observed that the TLBO algorithm repeatedly converges to give consistent values of solar cell parameters. It is demonstrated that our program based on TLBO algorithm can be successfully applied to a wide variety of solar cells and modules for the extraction of parameters from a single illuminated I–V curve with minimal control variables of the algorithm.

Suggested Citation

  • Patel, Sanjaykumar J. & Panchal, Ashish K. & Kheraj, Vipul, 2014. "Extraction of solar cell parameters from a single current–voltage characteristic using teaching learning based optimization algorithm," Applied Energy, Elsevier, vol. 119(C), pages 384-393.
  • Handle: RePEc:eee:appene:v:119:y:2014:i:c:p:384-393
    DOI: 10.1016/j.apenergy.2014.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914000464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    2. AlHajri, M.F. & El-Naggar, K.M. & AlRashidi, M.R. & Al-Othman, A.K., 2012. "Optimal extraction of solar cell parameters using pattern search," Renewable Energy, Elsevier, vol. 44(C), pages 238-245.
    3. A. Sellai & Z. Ouennoughi, 2005. "Extraction Of Illuminated Solar Cell And Schottky Diode Parameters Using A Genetic Algorithm," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(07), pages 1043-1050.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    2. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    3. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    4. Oumaima Mesbahi & Daruez Afonso & Mouhaydine Tlemçani & Amal Bouich & Fernando M. Janeiro, 2023. "Measurement Interval Effect on Photovoltaic Parameters Estimation," Energies, MDPI, vol. 16(18), pages 1-18, September.
    5. Huawen Sheng & Chunquan Li & Hanming Wang & Zeyuan Yan & Yin Xiong & Zhenting Cao & Qianying Kuang, 2019. "Parameters Extraction of Photovoltaic Models Using an Improved Moth-Flame Optimization," Energies, MDPI, vol. 12(18), pages 1-23, September.
    6. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    7. Mohana Alanazi & Abdulaziz Alanazi & Ahmad Almadhor & Hafiz Tayyab Rauf, 2022. "Photovoltaic Models’ Parameter Extraction Using New Artificial Parameterless Optimization Algorithm," Mathematics, MDPI, vol. 10(23), pages 1-32, December.
    8. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    9. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Blaifi, Sid-ali & Moulahoum, Samir & Taghezouit, Bilal & Saim, Abdelhakim, 2019. "An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 745-760.
    11. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    12. Tong, Nhan Thanh & Pora, Wanchalerm, 2016. "A parameter extraction technique exploiting intrinsic properties of solar cells," Applied Energy, Elsevier, vol. 176(C), pages 104-115.
    13. Khan, Firoz & Baek, Seong-Ho & Kim, Jae Hyun, 2016. "Wide range temperature dependence of analytical photovoltaic cell parameters for silicon solar cells under high illumination conditions," Applied Energy, Elsevier, vol. 183(C), pages 715-724.
    14. Jena, Debashisha & Ramana, Vanjari Venkata, 2015. "Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 400-417.
    15. Hassan Shaban & Essam H. Houssein & Marco Pérez-Cisneros & Diego Oliva & Amir Y. Hassan & Alaa A. K. Ismaeel & Diaa Salama AbdElminaam & Sanchari Deb & Mokhtar Said, 2021. "Identification of Parameters in Photovoltaic Models through a Runge Kutta Optimizer," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    16. Koohi-Kamalі, Sam & Rahim, N.A. & Mokhlis, H. & Tyagi, V.V., 2016. "Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 131-172.
    17. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    18. Jiao, Shan & Chong, Guoshuang & Huang, Changcheng & Hu, Hanqing & Wang, Mingjing & Heidari, Ali Asghar & Chen, Huiling & Zhao, Xuehua, 2020. "Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models," Energy, Elsevier, vol. 203(C).
    19. Long, Wen & Wu, Tiebin & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2021. "Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm," Energy, Elsevier, vol. 229(C).
    20. Prasanth Ram, J. & Rajasekar, N., 2017. "A new robust, mutated and fast tracking LPSO method for solar PV maximum power point tracking under partial shaded conditions," Applied Energy, Elsevier, vol. 201(C), pages 45-59.
    21. Kumar, Gaurav & Trivedi, Milind B. & Panchal, Ashish K., 2015. "Innovative and precise MPP estimation using P–V curve geometry for photovoltaics," Applied Energy, Elsevier, vol. 138(C), pages 640-647.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    2. Bastidas-Rodriguez, J.D. & Petrone, G. & Ramos-Paja, C.A. & Spagnuolo, G., 2017. "A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 38-54.
    3. Li, W. & Paul, M.C. & Rolley, M. & Sweet, T. & Gao, M. & Siviter, J. & Montecucco, A. & Knox, A.R. & Baig, H. & Mallick, T.K. & Fernandez, E.F. & Han, G. & Gregory, D.H. & Azough, F. & Freer, R., 2017. "A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells," Applied Energy, Elsevier, vol. 202(C), pages 755-771.
    4. Peñaranda Chenche, Luz Elena & Hernandez Mendoza, Oscar Saul & Bandarra Filho, Enio Pedone, 2018. "Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2823-2838.
    5. Deihimi, M.H. & Naghizadeh, R.A. & Meyabadi, A. Fattahi, 2016. "Systematic derivation of parameters of one exponential model for photovoltaic modules using numerical information of data sheet," Renewable Energy, Elsevier, vol. 87(P1), pages 676-685.
    6. Meng, Zhuo & Zhao, Yiman & Tang, Shiqing & Sun, Yize, 2020. "An efficient datasheet-based parameters extraction method for two-diode photovoltaic cell and cells model," Renewable Energy, Elsevier, vol. 153(C), pages 1174-1182.
    7. Askarzadeh, Alireza & Rezazadeh, Alireza, 2013. "Artificial bee swarm optimization algorithm for parameters identification of solar cell models," Applied Energy, Elsevier, vol. 102(C), pages 943-949.
    8. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    9. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    10. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    11. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    12. Chaabane Bouali & Horst Schulte & Abdelkader Mami, 2019. "A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search," Energies, MDPI, vol. 12(12), pages 1-32, June.
    13. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    14. Toledo, F.J. & Blanes, Jose M., 2014. "Geometric properties of the single-diode photovoltaic model and a new very simple method for parameters extraction," Renewable Energy, Elsevier, vol. 72(C), pages 125-133.
    15. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    16. Muhammad Ali Mughal & Qishuang Ma & Chunyan Xiao, 2017. "Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing," Energies, MDPI, vol. 10(8), pages 1-14, August.
    17. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    18. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    19. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    20. Long, Wen & Wu, Tiebin & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2021. "Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:119:y:2014:i:c:p:384-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.