IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v107y2019icp108-122.html
   My bibliography  Save this article

Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review

Author

Listed:
  • Poompavai, T.
  • Kowsalya, M.

Abstract

Pumping of water requires excessive energy for its operation by consuming a massive amount of diesel, gasoline, electric power etc. The more promising alternative energies to perform the same operation without any energy cost are solar photovoltaic (PV) and wind. These fastest growing renewable energies are more reliable and well suitable for remote villages where there is no possibility of extending transmission lines. Furthermore, these systems are optimal for conditions like only small amount of water needed to be pumped for a particular time. Unlike conventional energy sources of electric power, the renewable energy sources are not dispatchable its power output cannot be controlled. In that case, it involves power conversion stages so that it would necessitate to design an advanced control strategy technique. Those control strategies greatly avoid and protects the system from detrimental operating conditions by monitoring input voltage, water flow, torque, power, pressure, speed and motor vibration etc. Henceforth the use of efficient control strategy not only increase the performance of system it also helps to increase the number of operational hours of solar PV and wind energy systems. In this manuscript, the research work of various control strategies carried out in solar PV and wind energy-based water pumping systems are presented. Additionally, this paper intends to discuss the energy management strategies applied for renewable energy fed water pumping system when the system assisted with third energy system (battery bank, fuel cell, etc). These benefited systems ensure good design, guarantees the control speed required for the motor, regulates the flow of water, assuring accurate operation for all conversion and finally, it maintains precise balance in between the renewable energy generated and power required by the load (pump).

Suggested Citation

  • Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
  • Handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:108-122
    DOI: 10.1016/j.rser.2019.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119301169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Alawi, Ali & M Al-Alawi, Saleh & M Islam, Syed, 2007. "Predictive control of an integrated PV-diesel water and power supply system using an artificial neural network," Renewable Energy, Elsevier, vol. 32(8), pages 1426-1439.
    2. Yi Jin & Wenhui Hou & Guiqiang Li & Xiao Chen, 2017. "A Glowworm Swarm Optimization-Based Maximum Power Point Tracking for Photovoltaic/Thermal Systems under Non-Uniform Solar Irradiation and Temperature Distribution," Energies, MDPI, vol. 10(4), pages 1-13, April.
    3. van Staden, Adam Jacobus & Zhang, Jiangfeng & Xia, Xiaohua, 2011. "A model predictive control strategy for load shifting in a water pumping scheme with maximum demand charges," Applied Energy, Elsevier, vol. 88(12), pages 4785-4794.
    4. Sontake, Vimal Chand & Kalamkar, Vilas R., 2016. "Solar photovoltaic water pumping system - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1038-1067.
    5. Gao, Xuerui & Liu, Jiahong & Zhang, Jun & Yan, Jinyue & Bao, Shujun & Xu, He & Qin, Tao, 2013. "Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table," Applied Energy, Elsevier, vol. 105(C), pages 182-193.
    6. Zeddini, Mohamed. Ali & Pusca, Remus & Sakly, Anis & Mimouni, M. Faouzi, 2016. "PSO-based MPPT control of wind-driven Self-Excited Induction Generator for pumping system," Renewable Energy, Elsevier, vol. 95(C), pages 162-177.
    7. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    8. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
    9. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    10. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    11. Shafiqur Rehman & Ahmet Z. Sahin, 2014. "Comparing the Use of Diesel and Wind Power in Pumping Water in Saudi Arabia," Energy & Environment, , vol. 25(2), pages 369-388, April.
    12. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao, 2017. "Research and current status of the solar photovoltaic water pumping system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 440-458.
    13. Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.
    14. López-Luque, R. & Reca, J. & Martínez, J., 2015. "Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards," Applied Energy, Elsevier, vol. 149(C), pages 13-23.
    15. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2013. "Status of solar wind renewable energy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 1-10.
    16. Betka, A & Moussi, A, 2004. "Performance optimization of a photovoltaic induction motor pumping system," Renewable Energy, Elsevier, vol. 29(14), pages 2167-2181.
    17. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao & Ji, Jie, 2018. "Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 840-873.
    18. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    19. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    20. Bendib, Boualem & Belmili, Hocine & Krim, Fateh, 2015. "A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 637-648.
    21. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    22. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    23. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    24. Campana, Pietro Elia & Li, Hailong & Yan, Jinyue, 2013. "Dynamic modelling of a PV pumping system with special consideration on water demand," Applied Energy, Elsevier, vol. 112(C), pages 635-645.
    25. Daud, Abdel-Karim & Mahmoud, Marwan M., 2005. "Solar powered induction motor-driven water pump operating on a desert well, simulation and field tests," Renewable Energy, Elsevier, vol. 30(5), pages 701-714.
    26. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    27. Eltawil, Mohamed A. & Zhao, Zhengming, 2013. "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 793-813.
    28. Karami, Nabil & Moubayed, Nazih & Outbib, Rachid, 2017. "General review and classification of different MPPT Techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nupur Goyal & Mangey Ram & Akshay Kumar & Soni Bisht & Yury Klochkov, 2021. "Reliability Measures and Profit Exploration of Windmill Water-Pumping Systems Incorporating Warranty and Two Types of Repair," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
    2. Cervera-Gascó, Jorge & Montero, Jesús & Moreno, Miguel A., 2023. "An intelligent irrigation management model for direct injection of solar pumping systems," Agricultural Water Management, Elsevier, vol. 279(C).
    3. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    4. Somin Park & Younghyun Cho & Seulki Kim & Koo Lee & Junsin Yi, 2022. "Effect of Cell Electrical Mismatch on Output of Crystalline Photovoltaic Modules," Energies, MDPI, vol. 15(19), pages 1-21, October.
    5. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.
    6. Laurentiu Fara & Dan Craciunescu & Silvian Fara, 2021. "Numerical Modelling and Digitalization Analysis for a Photovoltaic Pumping System Placed in the South of Romania," Energies, MDPI, vol. 14(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    2. Shao, Weiwei & Liu, Jiahong & Zhu, Mingming & Weng, Baisha & Wang, Ning & Huang, Hao & Yu, Yingdong & Yan, Dianyi & Jiang, Shan, 2018. "Evaluation of a photovoltaic water-supply scheme for the surface water system in Xiamen, China," Applied Energy, Elsevier, vol. 230(C), pages 357-373.
    3. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    4. Ahmed, Eihab E.E. & Demirci, Alpaslan, 2022. "Multi-stage and multi-objective optimization for optimal sizing of stand-alone photovoltaic water pumping systems," Energy, Elsevier, vol. 252(C).
    5. Jately, Vibhu & Azzopardi, Brian & Joshi, Jyoti & Venkateswaran V, Balaji & Sharma, Abhinav & Arora, Sudha, 2021. "Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Allouhi, A. & Buker, M.S. & El-houari, H. & Boharb, A. & Benzakour Amine, M. & Kousksou, T. & Jamil, A., 2019. "PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation," Renewable Energy, Elsevier, vol. 132(C), pages 798-812.
    7. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    8. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    9. Yaichi, Mohammed & Fellah, Mohammed-Karim & Tayebi, Azzedinne & Boutadara, Abdelkader, 2019. "A fast and simplified method using non-linear translation of operating points for PV modules energy output and daily pumped water to predict the performance of a stand-alone photovoltaic pumping syste," Renewable Energy, Elsevier, vol. 133(C), pages 248-260.
    10. Peng, Lele & Zheng, Shubin & Chai, Xiaodong & Li, Liming, 2018. "A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances," Applied Energy, Elsevier, vol. 210(C), pages 303-316.
    11. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    13. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    14. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    15. Mahesh Vinayak Hadole & Kamlesh Narayan Tiwari & Prabodh Bajpai, 2021. "Energy generation and flow rate prediction of photovoltaic water pumping system for irrigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6722-6733, May.
    16. Julián Ignacio Monís & Rafael López-Luque & Juan Reca & Juan Martínez, 2020. "Multistage Bounded Evolutionary Algorithm to Optimize the Design of Sustainable Photovoltaic (PV) Pumping Irrigation Systems with Storage," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    17. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Singh, Bhuwan Pratap & Goyal, Sunil Kumar & Siddiqui, Shahbaz Ahmed & Saraswat, Amit & Ucheniya, Ravi, 2022. "Intersection Point Determination Method: A novel MPPT approach for sudden and fast changing environmental conditions," Renewable Energy, Elsevier, vol. 200(C), pages 614-632.
    19. Boutelhig, Azzedine & Hanini, Salah & Arab, Amar Hadj, 2018. "Geospatial characteristics investigation of suitable areas for photovoltaic water pumping erections, in the southern region of Ghardaia, Algeria," Energy, Elsevier, vol. 165(PA), pages 235-245.
    20. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:108-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.