IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v68y2017ip2p1106-1111.html
   My bibliography  Save this article

Strategic competences for concrete action towards sustainability: An oxymoron? Engineering education for a sustainable future

Author

Listed:
  • Mulder, Karel F.

Abstract

In the current discourses on sustainable development, one can discern two main intellectual cultures: an analytic one focusing on measuring problems and prioritizing measures, (Life Cycle Analysis (LCA), Mass Flow Analysis (MFA), etc.) and; a policy/management one, focusing on long term change, change incentives, and stakeholder management (Transitions/niches, Environmental economy, Cleaner production).

Suggested Citation

  • Mulder, Karel F., 2017. "Strategic competences for concrete action towards sustainability: An oxymoron? Engineering education for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1106-1111.
  • Handle: RePEc:eee:rensus:v:68:y:2017:i:p2:p:1106-1111
    DOI: 10.1016/j.rser.2016.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116002732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Carlsson, Bo & Jacobsson, Staffan & Holmen, Magnus & Rickne, Annika, 2002. "Innovation systems: analytical and methodological issues," Research Policy, Elsevier, vol. 31(2), pages 233-245, February.
    4. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    5. del Río, Pablo & Unruh, Gregory, 2007. "Overcoming the lock-out of renewable energy technologies in Spain: The cases of wind and solar electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1498-1513, September.
    6. van der Schoor, Tineke & Scholtens, Bert, 2015. "Power to the people: Local community initiatives and the transition to sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 666-675.
    7. Ntona, Eirini & Arabatzis, Garyfallos & Kyriakopoulos, Grigorios L., 2015. "Energy saving: Views and attitudes of students in secondary education," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 1-15.
    8. Nelson, Richard R. & Winter, Sidney G., 1993. "In search of useful theory of innovation," Research Policy, Elsevier, vol. 22(2), pages 108-108, April.
    9. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    10. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan-Cristian Dabija & Brandusa Mariana Bejan, 2018. "Green DIY store choice among socially responsible consumer generations," International Journal of Corporate Social Responsibility, Springer, vol. 3(1), pages 1-12, December.
    2. Barbiero, Tommaso & Grillenzoni, Carlo, 2019. "A statistical analysis of the energy effectiveness of building refurbishment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Véronique De Herde & Kevin Maréchal & Philippe V. Baret, 2019. "Lock-ins and Agency: Towards an Embedded Approach of Individual Pathways in the Walloon Dairy Sector," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    4. Balamuralithara Balakrishnan & Fumihiko Tochinai & Hidekazu Kanemitsu, 2020. "Perceptions and Attitudes towards Sustainable Development among Malaysian Undergraduates," International Journal of Higher Education, Sciedu Press, vol. 9(1), pages 1-44, February.
    5. Margarida Casau & Marta Ferreira Dias & João C. O. Matias & Leonel J. R. Nunes, 2022. "Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach," Resources, MDPI, vol. 11(4), pages 1-16, March.
    6. Izabela Simon Rampasso & Osvaldo L. G. Quelhas & Rosley Anholon & Marcio B. Pereira & Jocimar D. A. Miranda & Wenderson S. Alvarenga, 2020. "Engineering Education for Sustainable Development: Evaluation Criteria for Brazilian Context," Sustainability, MDPI, vol. 12(10), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bajmócy, Zoltán & Vas, Zsófia, 2012. "Az innovációs rendszerek 25 éve. Szakirodalmi áttekintés evolúciós közgazdaságtani megközelítésben [25 years of innovation systems. A literature review from the angle of evolutionary economics]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1233-1256.
    2. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    3. Souzanchi Kashani, Ebrahim & Roshani, Saeed, 2019. "Evolution of innovation system literature: Intellectual bases and emerging trends," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 68-80.
    4. Kuokkanen, A. & Nurmi, A. & Mikkilä, M. & Kuisma, M. & Kahiluoto, H. & Linnanen, L., 2018. "Agency in regime destabilization through the selection environment: The Finnish food system’s sustainability transition," Research Policy, Elsevier, vol. 47(8), pages 1513-1522.
    5. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    6. Kim Davis & Thomas Mazzuchi & Shahram Sarkani, 2013. "Architecting technology transitions: A sustainability‐oriented sociotechnical approach," Systems Engineering, John Wiley & Sons, vol. 16(2), pages 193-212, June.
    7. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    8. Chang, Rui-Dong & Zuo, Jian & Zhao, Zhen-Yu & Zillante, George & Gan, Xiao-Long & Soebarto, Veronica, 2017. "Evolving theories of sustainability and firms: History, future directions and implications for renewable energy research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 48-56.
    9. Kerstin Hötte, 2021. "Skill transferability and the stability of transition pathways- A learning-based explanation for patterns of diffusion," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 959-993, July.
    10. Thomas Brenner & Gesa Pflitsch, 2017. "The raise of publications on sustainability—a case study in Germany," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 37(2), pages 189-225, October.
    11. Jukka Luhas & Mirja Mikkilä & Ville Uusitalo & Lassi Linnanen, 2019. "Product Diversification in Sustainability Transition: The Forest-Based Bioeconomy in Finland," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    12. Bleda, Mercedes & del Río, Pablo, 2013. "The market failure and the systemic failure rationales in technological innovation systems," Research Policy, Elsevier, vol. 42(5), pages 1039-1052.
    13. Dahesh, Mehran Badin & Tabarsa, Gholamali & Zandieh, Mostafa & Hamidizadeh, Mohammadreza, 2020. "Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis," Technology in Society, Elsevier, vol. 63(C).
    14. Francesco Pasimeni, 2017. "Adoption and Diffusion of Micro-Grids in Italy. An Analysis of Regional Factors Using Agent-Based Modelling," SPRU Working Paper Series 2017-09, SPRU - Science Policy Research Unit, University of Sussex Business School.
    15. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    16. Gustafsson, Robin & Autio, Erkko, 2011. "A failure trichotomy in knowledge exploration and exploitation," Research Policy, Elsevier, vol. 40(6), pages 819-831, July.
    17. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    18. Davide Consoli, 2003. "The evolution of retail banking services in United Kingdom: a retrospective analysis," Industrial Organization 0310002, University Library of Munich, Germany.
    19. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    20. Hermans, Frans, 2018. "The potential contribution of transition theory to the analysis of bioclusters and their role in the transition to a bioeconomy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2), pages 265-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:68:y:2017:i:p2:p:1106-1111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.