IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v64y2016icp569-581.html
   My bibliography  Save this article

Particulate matter emission characteristics of diesel engines with biodiesel or biodiesel blending: A review

Author

Listed:
  • Wang, Ying
  • Liu, Hong
  • Lee, Chia-Fon F.

Abstract

A pursuit of environment conservation as well as a fluctuated rise in diesel price has moved worldwide interests towards biodiesel, a kind of clean and renewable alternative fuel for the diesel engines. However, owing to heterogeneous mixing between the air and fuel, particle matter(PM) emissions have always been a main concern in the development of the diesel engines, especially in the face of continuously updated and progressively stringent PM emission regulation. Therefore, this paper sorts out and analyzes the studies published chiefly in scientific journals about particle matter emissions of the diesel engines used biodiesel or biodiesel/diesel blends as fuels compared with those from the traditional diesel fuels. The paper mainly includes the following sections. The first section deals with the fundamentals of particle matters from the biodiesel combustion including particle composition, physical and chemical properties. In the next, particle formation mechanism as well as PAH formation is introduced briefly. The effects of biodiesel property on particle emission are discussed in the third section. Then, the effects of operating parameters of the engines on PM emissions have been analyzed in the fourth section. After that, the influences of biodiesel blending on diesel particulate filter (DPF) and radiocarbon (14C) analysis of biodiesel particles have been reviewed. At last, general conclusions are summarized and further research targets are proposed in this paper.

Suggested Citation

  • Wang, Ying & Liu, Hong & Lee, Chia-Fon F., 2016. "Particulate matter emission characteristics of diesel engines with biodiesel or biodiesel blending: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 569-581.
  • Handle: RePEc:eee:rensus:v:64:y:2016:i:c:p:569-581
    DOI: 10.1016/j.rser.2016.06.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116302982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.06.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahid, Ejaz M. & Jamal, Younis, 2011. "Production of biodiesel: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4732-4745.
    2. Hountalas, D.T. & Mavropoulos, G.C. & Binder, K.B., 2008. "Effect of exhaust gas recirculation (EGR) temperature for various EGR rates on heavy duty DI diesel engine performance and emissions," Energy, Elsevier, vol. 33(2), pages 272-283.
    3. Agarwal, Avinash Kumar & Gupta, Tarun & Kothari, Abhishek, 2011. "Particulate emissions from biodiesel vs diesel fuelled compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3278-3300, August.
    4. Janaun, Jidon & Ellis, Naoko, 2010. "Perspectives on biodiesel as a sustainable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1312-1320, May.
    5. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2010. "High quality biodiesel and its diesel engine application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1999-2008, September.
    6. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingming Lu & Aisha Tzillah & Ming Chai & Omer Aloraimi, 2023. "Compositional Analysis of Biodiesel Particulate Matter (BPM) from a Non-Road Diesel Generator," Energies, MDPI, vol. 16(13), pages 1-10, June.
    2. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Farhad M. Hossain & Md. Nurun Nabi & Md. Mostafizur Rahman & Saiful Bari & Thuy Chu Van & S. M. Ashrafur Rahman & Thomas J. Rainey & Timothy A. Bodisco & Kabir Suara & Zoran Ristovski & Richard J. Bro, 2019. "Experimental Investigation of Diesel Engine Performance, Combustion and Emissions Using a Novel Series of Dioctyl Phthalate (DOP) Biofuels Derived from Microalgae," Energies, MDPI, vol. 12(10), pages 1-14, May.
    4. Xuyang Zhang & Gang Lyu & Chonglin Song & Yuehan Qiao, 2020. "Effects of Biodiesel Addition on the Physical Properties and Reactivity of the Exhaust Soot Particles from Diesel Engine," Energies, MDPI, vol. 13(16), pages 1-15, August.
    5. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
    6. Szabados, György & Bereczky, Ákos & Ajtai, Tibor & Bozóki, Zoltán, 2018. "Evaluation analysis of particulate relevant emission of a diesel engine running on fossil diesel and different biofuels," Energy, Elsevier, vol. 161(C), pages 1139-1153.
    7. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen, 2021. "Development of a skeletal mechanism for four-component biodiesel surrogate fuel with PAH," Renewable Energy, Elsevier, vol. 171(C), pages 266-274.
    8. Yew Heng Teoh & Heoy Geok How & Farooq Sher & Thanh Danh Le & Huu Tho Nguyen & Haseeb Yaqoob, 2021. "Fuel Injection Responses and Particulate Emissions of a CRDI Engine Fueled with Cocos nucifera Biodiesel," Sustainability, MDPI, vol. 13(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    2. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    3. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    4. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    5. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
    6. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    7. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    8. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    9. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    10. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    11. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    12. Nongbe, Medy C. & Ekou, Tchirioua & Ekou, Lynda & Yao, Kouassi Benjamin & Le Grognec, Erwan & Felpin, François-Xavier, 2017. "Biodiesel production from palm oil using sulfonated graphene catalyst," Renewable Energy, Elsevier, vol. 106(C), pages 135-141.
    13. Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    14. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    15. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2018. "Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock," Energy, Elsevier, vol. 162(C), pages 408-420.
    16. Suvarna, Manu & Jahirul, Mohammad Islam & Aaron-Yeap, Wai Hung & Augustine, Cheryl Valencia & Umesh, Anushri & Rasul, Mohammad Golam & Günay, Mehmet Erdem & Yildirim, Ramazan & Janaun, Jidon, 2022. "Predicting biodiesel properties and its optimal fatty acid profile via explainable machine learning," Renewable Energy, Elsevier, vol. 189(C), pages 245-258.
    17. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    18. Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.
    19. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    20. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:64:y:2016:i:c:p:569-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.