IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp1031-1042.html
   My bibliography  Save this article

A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation

Author

Listed:
  • Shamshirband, Shahaboddin
  • Mohammadi, Kasra
  • Yee, Por Lip
  • Petković, Dalibor
  • Mostafaeipour, Ali

Abstract

In this paper, the extreme learning machine (ELM) is employed to predict horizontal global solar radiation (HGSR). For this purpose, the capability of developed ELM method is appraised statistically for prediction of monthly mean daily HGSR using three different types of input parameters: (1) sunshine duration-based (SDB), (2) difference temperature-based (TB) and (3) multiple parameters-based (MPB). The long-term measured data sets collected for city of Shiraz situated in the Fars province of Iran have been utilized as a case study. The predicted HGSR via ELM is compared with those of support vector machine (SVM), genetic programming (GP) and artificial neural network (ANN) to ensure the precision of ELM. It is found that higher accuracy can be obtained by multiple parameters-based estimation of HGSR using all techniques. The computational results prove that ELM is highly accurate and reliable and shows higher performance than SVM, GP and ANN. For multiple parameters-based ELM model, the mean absolute percentage error, mean absolute bias error, root mean square error, relative root mean square error and coefficient of determination are obtained as 2.2518%, 0.4343MJ/m2, 0.5882MJ/m2, 2.9757% and 0.9865, respectively. By conducting a further verification, it is found that the ELM method also offers high superiority over four empirical models established for this study and an intelligent model from the literature. In the final analysis, a proper sensitivity analysis is performed to identify the influence of considered input elements on HGSR prediction in which the results reveal the significance of appropriate selection of input parameters to boost the accuracy of HGSR prediction by the ELM algorithm. In a nutshell, the comparative results clearly specify that ELM technique can provide reliable predictions with further precision compared to the existing techniques.

Suggested Citation

  • Shamshirband, Shahaboddin & Mohammadi, Kasra & Yee, Por Lip & Petković, Dalibor & Mostafaeipour, Ali, 2015. "A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1031-1042.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1031-1042
    DOI: 10.1016/j.rser.2015.07.173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115008205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wong, Pak Kin & Wong, Ka In & Vong, Chi Man & Cheung, Chun Shun, 2015. "Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search," Renewable Energy, Elsevier, vol. 74(C), pages 640-647.
    2. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    3. Bahel, V. & Srinivasan, R. & Bakhsh, H., 1987. "Statistical comparison of correlations for estimation of global horizontal solar radiation," Energy, Elsevier, vol. 12(12), pages 1309-1316.
    4. Trabea, A.A. & Shaltout, M.A.Mosalam, 2000. "Correlation of global solar radiation with meteorological parameters over Egypt," Renewable Energy, Elsevier, vol. 21(2), pages 297-308.
    5. Muzathik, A.M. & Ibrahim, M.Z. & Samo, K.B. & Wan Nik, W.B., 2011. "Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements," Energy, Elsevier, vol. 36(2), pages 812-818.
    6. Dahmani, Kahina & Dizene, Rabah & Notton, Gilles & Paoli, Christophe & Voyant, Cyril & Nivet, Marie Laure, 2014. "Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model," Energy, Elsevier, vol. 70(C), pages 374-381.
    7. Mohammadi, Kasra & Shamshirband, Shahaboddin & Yee, Por Lip & Petković, Dalibor & Zamani, Mazdak & Ch, Sudheer, 2015. "Predicting the wind power density based upon extreme learning machine," Energy, Elsevier, vol. 86(C), pages 232-239.
    8. Mohammadi, Kasra & Mostafaeipour, Ali & Sabzpooshani, Majid, 2014. "Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran," Energy, Elsevier, vol. 67(C), pages 117-128.
    9. Ododo, J.C. & Sulaiman, A.T. & Aidan, J. & Yuguda, M.M. & Ogbu, F.A., 1995. "The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria," Renewable Energy, Elsevier, vol. 6(7), pages 751-763.
    10. Behrang, M.A. & Assareh, E. & Noghrehabadi, A.R. & Ghanbarzadeh, A., 2011. "New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique," Energy, Elsevier, vol. 36(5), pages 3036-3049.
    11. Rehman, Shafiqur & Mohandes, Mohamed, 2008. "Artificial neural network estimation of global solar radiation using air temperature and relative humidity," Energy Policy, Elsevier, vol. 36(2), pages 571-576, February.
    12. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.
    13. Bosch, J.L. & López, G. & Batlles, F.J., 2008. "Daily solar irradiation estimation over a mountainous area using artificial neural networks," Renewable Energy, Elsevier, vol. 33(7), pages 1622-1628.
    14. Rizwan, M. & Jamil, Majid & Kirmani, Sheeraz & Kothari, D.P., 2014. "Fuzzy logic based modeling and estimation of global solar energy using meteorological parameters," Energy, Elsevier, vol. 70(C), pages 685-691.
    15. Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
    16. Bahel, V. & Bakhsh, H. & Srinivasan, R., 1987. "A correlation for estimation of global solar radiation," Energy, Elsevier, vol. 12(2), pages 131-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    2. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    3. Mohammadi, Kasra & Shamshirband, Shahaboddin & Kamsin, Amirrudin & Lai, P.C. & Mansor, Zulkefli, 2016. "Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 423-434.
    4. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    5. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    6. Khorasanizadeh, H. & Mohammadi, K., 2013. "Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran," Energy, Elsevier, vol. 51(C), pages 257-266.
    7. Samuel Chukwujindu, Nwokolo, 2017. "A comprehensive review of empirical models for estimating global solar radiation in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 955-995.
    8. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    9. Olatomiwa, Lanre & Mekhilef, Saad & Shamshirband, Shahaboddin & Petković, Dalibor, 2015. "Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1784-1791.
    10. Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    12. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    13. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    14. Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.
    15. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    16. Katiyar, A.K. & Pandey, Chanchal Kumar, 2010. "Simple correlation for estimating the global solar radiation on horizontal surfaces in India," Energy, Elsevier, vol. 35(12), pages 5043-5048.
    17. Olubayo M. Babatunde & Josiah L. Munda & Yskandar Hamam, 2020. "Exploring the Potentials of Artificial Neural Network Trained with Differential Evolution for Estimating Global Solar Radiation," Energies, MDPI, vol. 13(10), pages 1-18, May.
    18. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    19. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Prediction of monthly average global solar radiation based on statistical distribution of clearness index," Energy, Elsevier, vol. 90(P2), pages 1733-1742.
    20. Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong & Zhao, Liang, 2011. "Global solar radiation estimation with sunshine duration in Tibet, China," Renewable Energy, Elsevier, vol. 36(11), pages 3141-3145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1031-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.