IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v155y2022ics1364032121011230.html
   My bibliography  Save this article

Global solar radiation models: A critical review from the point of view of homogeneity and case study

Author

Listed:
  • Prieto, Jesús-Ignacio
  • García, David

Abstract

Access to reliable solar radiation data is of paramount importance for the sustainable development of mankind. However, solar radiation measurements are available in few meteorological stations, so models are used to estimate global solar radiation from other climate variables. This paper presents a compilation of 165 global solar radiation models that is representative of the progress over the last 100 years. The models were classified according to the type of variables used and a large majority of dimensionally non-homogeneous equations were identified. Furthermore, it was observed that comparisons between various models studied in different regions over recent decades were occasionally contradictory, so that no single existing model seems to have definitively outperformed the others. In this context, homogeneity analysis provides a procedure to improve the quality of models by reducing the presence of variables implicit in numerical coefficients, which deserves to be valued as a methodological tool. In addition, a previously introduced temperature-based homogeneous model was updated using recent experimental data and revising the functional form of the local geographic factor dependent on elevation and distance to the sea. Using site-calibrated coefficients, the modified model provides accurate results at 22 meteorological stations in northern Spain, located over a distance of about 1000 km. Using a general equation, acceptable predictions are obtained for the 21 stations with the highest climatic similarity.

Suggested Citation

  • Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011230
    DOI: 10.1016/j.rser.2021.111856
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121011230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Sebaii, A.A. & Al-Ghamdi, A.A. & Al-Hazmi, F.S. & Faidah, Adel S., 2009. "Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia," Energy Policy, Elsevier, vol. 37(9), pages 3645-3649, September.
    2. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    3. Ertekin, Can & Yaldız, Osman, 1999. "Estimation of monthly average daily global radiation on horizontal surface for Antalya (Turkey)," Renewable Energy, Elsevier, vol. 17(1), pages 95-102.
    4. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    5. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    6. Bahel, V. & Srinivasan, R. & Bakhsh, H., 1987. "Statistical comparison of correlations for estimation of global horizontal solar radiation," Energy, Elsevier, vol. 12(12), pages 1309-1316.
    7. Korachagaon, Iranna & Bapat, V.N., 2012. "General formula for the estimation of global solar radiation on earth’s surface around the globe," Renewable Energy, Elsevier, vol. 41(C), pages 394-400.
    8. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    9. Myers, Daryl R., 2005. "Solar radiation modeling and measurements for renewable energy applications: data and model quality," Energy, Elsevier, vol. 30(9), pages 1517-1531.
    10. Muneer, T. & Younes, S. & Munawwar, S., 2007. "Discourses on solar radiation modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 551-602, May.
    11. Zang, Haixiang & Xu, Qingshan & Bian, Haihong, 2012. "Generation of typical solar radiation data for different climates of China," Energy, Elsevier, vol. 38(1), pages 236-248.
    12. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    13. Antonanzas-Torres, F. & Sanz-Garcia, A. & Martínez-de-Pisón, F.J. & Perpiñán-Lamigueiro, O., 2013. "Evaluation and improvement of empirical models of global solar irradiation: Case study northern Spain," Renewable Energy, Elsevier, vol. 60(C), pages 604-614.
    14. Yıldırım, H. Başak & Teke, Ahmet & Antonanzas-Torres, Fernando, 2018. "Evaluation of classical parametric models for estimating solar radiation in the Eastern Mediterranean region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2053-2065.
    15. Almorox, J. & Hontoria, C. & Benito, M., 2011. "Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain)," Applied Energy, Elsevier, vol. 88(5), pages 1703-1709, May.
    16. Wan, Kevin K.W. & Tang, H.L. & Yang, Liu & Lam, Joseph C., 2008. "An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks," Energy, Elsevier, vol. 33(7), pages 1115-1127.
    17. Ododo, J.C. & Sulaiman, A.T. & Aidan, J. & Yuguda, M.M. & Ogbu, F.A., 1995. "The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria," Renewable Energy, Elsevier, vol. 6(7), pages 751-763.
    18. Qin, Jun & Chen, Zhuoqi & Yang, Kun & Liang, Shunlin & Tang, Wenjun, 2011. "Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products," Applied Energy, Elsevier, vol. 88(7), pages 2480-2489, July.
    19. Badescu, Viorel, 1999. "Correlations to estimate monthly mean daily solar global irradiation: application to Romania," Energy, Elsevier, vol. 24(10), pages 883-893.
    20. Toğrul, Inci Turk & Toğrul, Hasan & Evin, Duygu, 2000. "Estimation of global solar radiation under clear sky radiation in Turkey," Renewable Energy, Elsevier, vol. 21(2), pages 271-287.
    21. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    22. Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong & Zhao, Liang, 2011. "Global solar radiation estimation with sunshine duration in Tibet, China," Renewable Energy, Elsevier, vol. 36(11), pages 3141-3145.
    23. Ampratwum, David B. & Dorvlo, Atsu S. S., 1999. "Estimation of solar radiation from the number of sunshine hours," Applied Energy, Elsevier, vol. 63(3), pages 161-167, July.
    24. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    25. Bahel, V. & Bakhsh, H. & Srinivasan, R., 1987. "A correlation for estimation of global solar radiation," Energy, Elsevier, vol. 12(2), pages 131-135.
    26. Adaramola, Muyiwa S., 2012. "Estimating global solar radiation using common meteorological data in Akure, Nigeria," Renewable Energy, Elsevier, vol. 47(C), pages 38-44.
    27. Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    2. Paulescu, Marius & Badescu, Viorel & Budea, Sanda & Dumitrescu, Alexandru, 2022. "Empirical sunshine-based models vs online estimators for solar resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    2. Zang, Haixiang & Jiang, Xin & Cheng, LiLin & Zhang, Fengchun & Wei, Zhinong & Sun, Guoqiang, 2022. "Combined empirical and machine learning modeling method for estimation of daily global solar radiation for general meteorological observation stations," Renewable Energy, Elsevier, vol. 195(C), pages 795-808.
    3. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    4. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    5. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    6. Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    8. Bouchouicha, Kada & Hassan, Muhammed A. & Bailek, Nadjem & Aoun, Nouar, 2019. "Estimating the global solar irradiation and optimizing the error estimates under Algerian desert climate," Renewable Energy, Elsevier, vol. 139(C), pages 844-858.
    9. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    10. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    11. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    12. Jesús-Ignacio Prieto & David García & Ruth Santoro, 2022. "Comparative Analysis of Accuracy, Simplicity and Generality of Temperature-Based Global Solar Radiation Models: Application to the Solar Map of Asturias," Sustainability, MDPI, vol. 14(11), pages 1-29, May.
    13. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    14. Samuel Chukwujindu, Nwokolo, 2017. "A comprehensive review of empirical models for estimating global solar radiation in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 955-995.
    15. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    16. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    17. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    18. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    19. Mercedeh Taheri & Abdolmajid Mohammadian & Fatemeh Ganji & Mostafa Bigdeli & Mohsen Nasseri, 2022. "Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges," Energies, MDPI, vol. 15(4), pages 1-57, February.
    20. Olubayo M. Babatunde & Josiah L. Munda & Yskandar Hamam, 2020. "Exploring the Potentials of Artificial Neural Network Trained with Differential Evolution for Estimating Global Solar Radiation," Energies, MDPI, vol. 13(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.