IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp1499-1508.html
   My bibliography  Save this article

Performance and potential of solar updraft tower used as an effective measure to alleviate Chinese urban haze problem

Author

Listed:
  • Zhou, Xinping
  • Xu, Yangyang
  • Yuan, Shuo
  • Wu, Cai
  • Zhang, Hao

Abstract

Due to rapid urbanization, dense haze is formed in some Chinese cities where urban heat island (UHI) effect is aggravated. The urban haze problem has become a touchy issue significantly affecting humans living and working in the cities. Solar updraft tower (SUT) is a device that can drive warm air up to high altitude under the effect of natural buoyancy. In this paper, high SUTs are proposed to be used to drive the UHI warm air containing haze up to higher altitude and help the haze disperse to farther distance, thus lowering the concentration of haze effectively. This proposal can effectively alleviate the urban haze problem and simultaneously produce clean electric power in Chinese cities. The performance analyses and cost analyses of sole SUT for power generation in a UHI are conducted. The number of 1 and 1.5km high SUTs only for impelling air up in UHIs of several main Chinese cities are estimated, respectively.

Suggested Citation

  • Zhou, Xinping & Xu, Yangyang & Yuan, Shuo & Wu, Cai & Zhang, Hao, 2015. "Performance and potential of solar updraft tower used as an effective measure to alleviate Chinese urban haze problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1499-1508.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1499-1508
    DOI: 10.1016/j.rser.2015.07.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211500667X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Xinping & Bernardes, Marco A. dos S. & Ochieng, Reccab M., 2012. "Influence of atmospheric cross flow on solar updraft tower inflow," Energy, Elsevier, vol. 42(1), pages 393-400.
    2. Hans Westlund & Yuheng Li, 2014. "From urban-rural to global dependencies," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 13(2/3/4), pages 141-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yangyang & Zhou, Xinping, 2019. "Performance of a modified solar chimney power plant for power generation and vegetation," Energy, Elsevier, vol. 171(C), pages 502-509.
    2. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    3. Tan, Dongwen & Zhou, Xinping & Xu, Yangyang & Wu, Cai & Li, Yong, 2017. "Environmental, health and economic benefits of using urban updraft tower to govern urban air pollution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1300-1308.
    4. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    6. Zhou, Zhihua & Liu, Yurong & Yuan, Jianjuan & Zuo, Jian & Chen, Guanyi & Xu, Linyu & Rameezdeen, Raufdeen, 2016. "Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in Tianjin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 372-381.
    7. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    2. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    3. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Effects of flow area changes on the potential of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 400-406.
    4. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.
    5. Monika Janičíková, 2014. "Role of Financial Accounting Standardization in Initial Public Offerings [Role standardizace finančního účetnictví při kotaci podniku na veřejném kapitálovém trhu]," Český finanční a účetní časopis, Prague University of Economics and Business, vol. 2014(4), pages 94-105.
    6. De Oliveira, Fernando C. & Coelho, Suani T., 2017. "History, evolution, and environmental impact of biodiesel in Brazil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 168-179.
    7. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Mathematical modeling of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 314-322.
    8. Budzianowski, Wojciech M., 2012. "Target for national carbon intensity of energy by 2050: A case study of Poland's energy system," Energy, Elsevier, vol. 46(1), pages 575-581.
    9. RahimiLarki, Mohsen & Abardeh, Reza Hosseini & Rahimzadeh, Hassan & Sarlak, Hamid, 2021. "Performance analysis of a laboratory-scale tilted solar chimney system exposed to ambient crosswind," Renewable Energy, Elsevier, vol. 164(C), pages 1156-1170.
    10. Hurtado, F.J. & Kaiser, A.S. & Zamora, B., 2012. "Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant," Energy, Elsevier, vol. 47(1), pages 213-224.
    11. Xiong, Hanbing & Ming, Tingzhen & Wu, Yongjia & Wang, Caixia & Chen, Qiong & Li, Wei & Mu, Liwen & de Richter, Renaud & Yuan, Yanping, 2022. "Numerical analysis of solar chimney power plant integrated with CH4 photocatalytic reactors for fighting global warming under ambient crosswind," Renewable Energy, Elsevier, vol. 201(P1), pages 678-690.
    12. Al-Kayiem, Hussain H. & Aja, Ogboo Chikere, 2016. "Historic and recent progress in solar chimney power plant enhancing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1269-1292.
    13. Beverelli, Cosimo & Neumueller, Simon & Teh, Robert, 2015. "Export Diversification Effects of the WTO Trade Facilitation Agreement," World Development, Elsevier, vol. 76(C), pages 293-310.
    14. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    15. Koonsrisuk, Atit, 2012. "Mathematical modeling of sloped solar chimney power plants," Energy, Elsevier, vol. 47(1), pages 582-589.
    16. Arefian, Amir & Hosseini-Abardeh, Reza & Rahimi-Larki, Mohsen & Torkfar, Arman & Sarlak, Hamid, 2024. "A comprehensive analysis of time-dependent performance of a solar chimney power plant equipped with a thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Rahimi-Larki, Mohsen & Arefian, Amir & Nazari, Samira & Torkfar, Arman & Hosseini-Abardeh, Reza & Sarlak, Hamid, 2025. "Performance investigation of a sloped collector solar chimney system exposed to the ambient crosswind," Energy, Elsevier, vol. 318(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1499-1508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.