IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v50y2015icp372-407.html
   My bibliography  Save this article

A sustainability assessment framework for geothermal energy projects: Development in Iceland, New Zealand and Kenya

Author

Listed:
  • Shortall, Ruth
  • Davidsdottir, Brynhildur
  • Axelsson, Guðni

Abstract

With increasing global energy consumption, geothermal energy usage is set to increase in the future. There is potential for geothermal developments in many countries all over the world, where geothermal resources are located. Geothermal developments may result in both positive and negative environmental and socio-economic impacts. Sustainability assessment tools are useful to decision-makers in showing the progress of energy developments towards sustainability, and the international community has called for the development of indicators to steer countries or regions into sustainable energy development.

Suggested Citation

  • Shortall, Ruth & Davidsdottir, Brynhildur & Axelsson, Guðni, 2015. "A sustainability assessment framework for geothermal energy projects: Development in Iceland, New Zealand and Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 372-407.
  • Handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:372-407
    DOI: 10.1016/j.rser.2015.04.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115004487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bohringer, Christoph & Jochem, Patrick E.P., 2007. "Measuring the immeasurable -- A survey of sustainability indices," Ecological Economics, Elsevier, vol. 63(1), pages 1-8, June.
    2. Gallego Carrera, Diana & Mack, Alexander, 2010. "Sustainability assessment of energy technologies via social indicators: Results of a survey among European energy experts," Energy Policy, Elsevier, vol. 38(2), pages 1030-1039, February.
    3. Ogola, Pacifica F. Achieng & Davidsdottir, Brynhildur & Fridleifsson, Ingvar Birgir, 2011. "Lighting villages at the end of the line with geothermal energy in eastern Baringo lowlands, Kenya – Steps towards reaching the millennium development goals (MDGs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4067-4079.
    4. Shortall, Ruth & Davidsdottir, Brynhildur & Axelsson, Guðni, 2015. "Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 391-406.
    5. Mariita, Nicholas O., 2002. "The impact of large-scale renewable energy development on the poor: environmental and socio-economic impact of a geothermal power plant on a poor rural community in Kenya," Energy Policy, Elsevier, vol. 30(11-12), pages 1119-1128, September.
    6. Alvarez Etxeberria, Igor & Garayar, Ainhoa & Calvo Sánchez, José Antonio, 2015. "Development of sustainability reports for farming operations in the Basque Country using the Delphi method," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 18(1), pages 44-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Acheilas & Fransje Hooimeijer & Aksel Ersoy, 2020. "A Decision Support Tool for Implementing District Heating in Existing Cities, Focusing on Using a Geothermal Source," Energies, MDPI, vol. 13(11), pages 1-30, May.
    2. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Alessandro Franco & Maurizio Vaccaro, 2020. "Sustainable Sizing of Geothermal Power Plants: Appropriate Potential Assessment Methods," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    4. Simsek, Yeliz & Watts, David & Escobar, Rodrigo, 2018. "Sustainability evaluation of Concentrated Solar Power (CSP) projects under Clean Development Mechanism (CDM) by using Multi Criteria Decision Method (MCDM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 421-438.
    5. Vitantonio Colucci & Giampaolo Manfrida & Barbara Mendecka & Lorenzo Talluri & Claudio Zuffi, 2021. "LCA and Exergo-Environmental Evaluation of a Combined Heat and Power Double-Flash Geothermal Power Plant," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    6. Erick C. Jones & Chandramouli Munjurpet Sridharan & Raziye Aghapour & Angel Rodriguez, 2025. "Re-Energizing Legacy Fossil Infrastructure: Evaluating Geothermal Power in Tribal Lands and HUBZones," Sustainability, MDPI, vol. 17(6), pages 1-22, March.
    7. Wang, Zhaoxia & Zhao, Jing & Li, Meng, 2017. "Analysis and optimization of carbon trading mechanism for renewable energy application in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 435-451.
    8. Vivek Arulnathan & Mohammad Davoud Heidari & Maurice Doyon & Eric P. H. Li & Nathan Pelletier, 2022. "Economic Indicators for Life Cycle Sustainability Assessment: Going beyond Life Cycle Costing," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    9. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    10. Guangdong Wu & Guofeng Qiang & Jian Zuo & Xianbo Zhao & Ruidong Chang, 2018. "What are the Key Indicators of Mega Sustainable Construction Projects? —A Stakeholder-Network Perspective," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    11. Hamidreza Hasheminasab & Yaghob Gholipour & Mohammadreza Kharrazi & Dalia Streimikiene & Sarfaraz Hashemkhani, 2020. "A dynamic sustainability framework for petroleum refinery projects with a life cycle attitude," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1033-1048, September.
    12. Solano-Olivares, K. & Santoyo, E. & Santoyo-Castelazo, E., 2024. "Integrated sustainability assessment framework for geothermal energy technologies: A literature review and a new proposal of sustainability indicators for Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    2. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    4. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Solano-Olivares, K. & Santoyo, E. & Santoyo-Castelazo, E., 2024. "Integrated sustainability assessment framework for geothermal energy technologies: A literature review and a new proposal of sustainability indicators for Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Povellato, Andrea & Bodini, Antonella & Longhitano, Davide & Scardera, Alfonso, 2012. "Assessing farm sustainability. An application with the Italian FADN sample," 2012 First Congress, June 4-5, 2012, Trento, Italy 124381, Italian Association of Agricultural and Applied Economics (AIEAA).
    7. Cynthia H. Stahl, 2014. "Out of the Land of Oz: the importance of tackling wicked environmental problems without taming them," Environment Systems and Decisions, Springer, vol. 34(4), pages 473-477, December.
    8. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    9. Ana Paula Coelho Clauberg & Renato de Mello & Flávio José Simioni & Simone Sehnem, 2021. "System for assessing the sustainability conditions of small hydro plants by fuzzy logic," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 300-317, March.
    10. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    11. Muhammad Umar & Abraham Ayobamiji Awosusi & Oluwatayomi Rereloluwa Adegboye & Opeoluwa Seun Ojekemi, 2024. "Geothermal energy and carbon emissions nexus in leading geothermal-consuming nations: Evidence from nonparametric analysis," Energy & Environment, , vol. 35(5), pages 2726-2752, August.
    12. Nisreen Salti & Jad Chaaban & Alexandra Irani & Rima Al Mokdad, 2021. "A Multi-Dimensional Measure of Well-being among Youth: The Case of Palestinian Refugee Youth in Lebanon," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(1), pages 1-34, February.
    13. Daniela Cristina Momete & Manuel Mihail Momete, 2021. "Map and Track the Performance in Education for Sustainable Development across the European Union," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    14. Li, Biao & Xie, Heping & Sun, Licheng & Gao, Tianyi & Xia, Entong & Liu, Bowen & Wang, Jun & Long, Xiting, 2025. "Advanced exergy analysis and multi-objective optimization of dual-loop ORC utilizing LNG cold energy and geothermal energy," Renewable Energy, Elsevier, vol. 239(C).
    15. Duck Bong Kim, 2019. "An approach for composing predictive models from disparate knowledge sources in smart manufacturing environments," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1999-2012, April.
    16. Daniela C. Momete, 2016. "Building a Sustainable Healthcare Model: A Cross-Country Analysis," Sustainability, MDPI, vol. 8(9), pages 1-15, August.
    17. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    18. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    19. Makkonen, Mari & Pätäri, Satu & Jantunen, Ari & Viljainen, Satu, 2012. "Competition in the European electricity markets – outcomes of a Delphi study," Energy Policy, Elsevier, vol. 44(C), pages 431-440.
    20. Antonella Lerario & Silvia Di Turi, 2018. "Sustainable Urban Tourism: Reflections on the Need for Building-Related Indicators," Sustainability, MDPI, vol. 10(6), pages 1-25, June.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:372-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.