IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v49y2015icp672-679.html
   My bibliography  Save this article

Comprehensive analysis on the role of array size and configuration on energy yield of photovoltaic systems under shaded conditions

Author

Listed:
  • Malathy, S.
  • Ramaprabha, R.

Abstract

Partial shading is a condition where, the panels in a photovoltaic (PV) array do not receive uniform irradiation. Shading causes mismatch in the electrical characteristics of the panels composing the PV array and results in significant reduction in the energy yield. The reduction in output is not proportional to the shaded area but depends on the extent of mismatch that in turn depends on other factors like array size, type of configuration chosen, position of the panels in the array and shading pattern. To reduce the severity of this issue and to improve the energy yield under shaded conditions, it is therefore necessary to analyze the role played by each one of the contributing factors in greater detail. This paper presents a detailed analysis focusing mainly on the role played by the array size, array configuration (interconnections among the panels) and the shading pattern on the energy yield under partial shading conditions.

Suggested Citation

  • Malathy, S. & Ramaprabha, R., 2015. "Comprehensive analysis on the role of array size and configuration on energy yield of photovoltaic systems under shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 672-679.
  • Handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:672-679
    DOI: 10.1016/j.rser.2015.04.165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115004359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silvestre, S. & Boronat, A. & Chouder, A., 2009. "Study of bypass diodes configuration on PV modules," Applied Energy, Elsevier, vol. 86(9), pages 1632-1640, September.
    2. Alonso-García, M.C. & Ruiz, J.M. & Herrmann, W., 2006. "Computer simulation of shading effects in photovoltaic arrays," Renewable Energy, Elsevier, vol. 31(12), pages 1986-1993.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    2. Malathy, S. & Ramaprabha, R., 2018. "Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2922-2934.
    3. Bana, Sangram & Saini, R.P., 2017. "Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios," Energy, Elsevier, vol. 127(C), pages 438-453.
    4. Satpathy, Priya Ranjan & Sharma, Renu & Dash, Sambit, 2019. "An efficient SD-PAR technique for maximum power generation from modules of partially shaded PV arrays," Energy, Elsevier, vol. 175(C), pages 182-194.
    5. Peter Udenze & Yihua Hu & Huiqing Wen & Xianming Ye & Kai Ni, 2018. "A Reconfiguration Method for Extracting Maximum Power from Non-Uniform Aging Solar Panels," Energies, MDPI, vol. 11(10), pages 1-15, October.
    6. Pillai, Dhanup S. & Shabunko, Veronika & Krishna, Amal, 2022. "A comprehensive review on building integrated photovoltaic systems: Emphasis to technological advancements, outdoor testing, and predictive maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    8. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bressan, M. & El Basri, Y. & Galeano, A.G. & Alonso, C., 2016. "A shadow fault detection method based on the standard error analysis of I-V curves," Renewable Energy, Elsevier, vol. 99(C), pages 1181-1190.
    2. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    3. Pareek, Smita & Dahiya, Ratna, 2016. "Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules," Energy, Elsevier, vol. 95(C), pages 561-572.
    4. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    5. Dolara, Alberto & Lazaroiu, George Cristian & Leva, Sonia & Manzolini, Giampaolo, 2013. "Experimental investigation of partial shading scenarios on PV (photovoltaic) modules," Energy, Elsevier, vol. 55(C), pages 466-475.
    6. Masa-Bote, Daniel & Caamaño-Martín, Estefanía, 2014. "Methodology for estimating building integrated photovoltaics electricity production under shadowing conditions and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 492-500.
    7. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    8. Orozco-Gutierrez, M.L. & Ramirez-Scarpetta, J.M. & Spagnuolo, G. & Ramos-Paja, C.A., 2014. "A method for simulating large PV arrays that include reverse biased cells," Applied Energy, Elsevier, vol. 123(C), pages 157-167.
    9. Rodrigo, P. & Gutiérrez, S. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2015. "A methodology for the electrical characterization of shaded high concentrator photovoltaic modules," Energy, Elsevier, vol. 89(C), pages 768-777.
    10. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    11. Gao, Dan & Zhao, Yang & Liang, Kai & He, Shuyu & Zhang, Heng & Chen, Haiping, 2022. "Energy and exergy analyses of a low-concentration photovoltaic/thermal module with glass channel," Energy, Elsevier, vol. 253(C).
    12. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    13. Merino, S. & Sánchez, F.J. & Sidrach de Cardona, M. & Guzmán, F. & Guzmán, R. & Martínez, J. & Sotorrío, P.J., 2018. "Optimization of energy distribution in solar panel array configurations by graphs and Minkowski’s paths," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 48-58.
    14. Perpiñán, O., 2012. "Cost of energy and mutual shadows in a two-axis tracking PV system," Renewable Energy, Elsevier, vol. 43(C), pages 331-342.
    15. Mäki, Anssi & Valkealahti, Seppo, 2014. "Differentiation of multiple maximum power points of partially shaded photovoltaic power generators," Renewable Energy, Elsevier, vol. 71(C), pages 89-99.
    16. Murugesan, Palpandian & David, Prince Winston & Murugesan, Pravin & Periyasamy, Pounraj, 2023. "Battery based mismatch reduction technique for partial shaded solar PV system," Energy, Elsevier, vol. 272(C).
    17. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Mather, Peter, 2017. "Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system," Energy, Elsevier, vol. 140(P1), pages 276-290.
    18. Malathy, S. & Ramaprabha, R., 2018. "Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2922-2934.
    19. Xiaoguang Liu & Yuefeng Wang, 2019. "Reconfiguration Method to Extract More Power from Partially Shaded Photovoltaic Arrays with Series-Parallel Topology," Energies, MDPI, vol. 12(8), pages 1-16, April.
    20. d'Alessandro, Vincenzo & Di Napoli, Fabio & Guerriero, Pierluigi & Daliento, Santolo, 2015. "An automated high-granularity tool for a fast evaluation of the yield of PV plants accounting for shading effects," Renewable Energy, Elsevier, vol. 83(C), pages 294-304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:672-679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.