IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp1181-1190.html
   My bibliography  Save this article

A shadow fault detection method based on the standard error analysis of I-V curves

Author

Listed:
  • Bressan, M.
  • El Basri, Y.
  • Galeano, A.G.
  • Alonso, C.

Abstract

Shading on photovoltaic (PV) modules induces disproportionate impacts on power production. This paper presents a fault detection method able to identify anomalies on PV systems such as shading problems. The presence of localized shading on PV modules leads to an overheating of the shaded PV cells despite the activation of by-pass diodes. The temperature increase reduces considerably PV module performances and its lifetime. The presented method uses a simple equation, which corresponds to the normalized error (DE) of the comparison between the I-V curve in normal operation and the I-V curve in shading condition. The first derivative calculation gives the area of the detection in function of the PV voltage of the module (DE/DV). This defines whether one or several PV cells dissipate power. This phenomenon essentially occurs in the case of non-uniform irradiance received on PV modules and could impact PV modules performances. The detection method is explained in detail through the study of specific shadows simulations on PV modules. The results are validated through experimental tests on PV modules.

Suggested Citation

  • Bressan, M. & El Basri, Y. & Galeano, A.G. & Alonso, C., 2016. "A shadow fault detection method based on the standard error analysis of I-V curves," Renewable Energy, Elsevier, vol. 99(C), pages 1181-1190.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1181-1190
    DOI: 10.1016/j.renene.2016.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116307297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.08.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silvestre, S. & Boronat, A. & Chouder, A., 2009. "Study of bypass diodes configuration on PV modules," Applied Energy, Elsevier, vol. 86(9), pages 1632-1640, September.
    2. Sun, Liangliang & Lu, Lin & Yang, Hongxing, 2012. "Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles," Applied Energy, Elsevier, vol. 90(1), pages 233-240.
    3. Alonso-García, M.C. & Ruiz, J.M. & Herrmann, W., 2006. "Computer simulation of shading effects in photovoltaic arrays," Renewable Energy, Elsevier, vol. 31(12), pages 1986-1993.
    4. Kalogirou, Soteris A. & Agathokleous, Rafaela & Panayiotou, Gregoris, 2013. "On-site PV characterization and the effect of soiling on their performance," Energy, Elsevier, vol. 51(C), pages 439-446.
    5. Orozco-Gutierrez, M.L. & Ramirez-Scarpetta, J.M. & Spagnuolo, G. & Ramos-Paja, C.A., 2014. "A method for simulating large PV arrays that include reverse biased cells," Applied Energy, Elsevier, vol. 123(C), pages 157-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan & Abdulrahman Alraeesi, 2021. "Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    2. Mariana Durango-Flórez & Daniel González-Montoya & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja, 2022. "PV Array Reconfiguration Based on Genetic Algorithm for Maximum Power Extraction and Energy Impact Analysis," Sustainability, MDPI, vol. 14(7), pages 1-14, March.
    3. Joshuva Arockia Dhanraj & Ali Mostafaeipour & Karthikeyan Velmurugan & Kuaanan Techato & Prem Kumar Chaurasiya & Jenoris Muthiya Solomon & Anitha Gopalan & Khamphe Phoungthong, 2021. "An Effective Evaluation on Fault Detection in Solar Panels," Energies, MDPI, vol. 14(22), pages 1-14, November.
    4. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    5. Rico Espinosa, Alejandro & Bressan, Michael & Giraldo, Luis Felipe, 2020. "Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 249-256.
    6. Odysseas Tsafarakis & Kostas Sinapis & Wilfried G. J. H. M. van Sark, 2019. "A Time-Series Data Analysis Methodology for Effective Monitoring of Partially Shaded Photovoltaic Systems," Energies, MDPI, vol. 12(9), pages 1-18, May.
    7. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    8. Bressan, M. & Gutierrez, A. & Garcia Gutierrez, L. & Alonso, C., 2018. "Development of a real-time hot-spot prevention using an emulator of partially shaded PV systems," Renewable Energy, Elsevier, vol. 127(C), pages 334-343.
    9. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    10. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    11. Alonso Gutiérrez Galeano & Michael Bressan & Fernando Jiménez Vargas & Corinne Alonso, 2018. "Shading Ratio Impact on Photovoltaic Modules and Correlation with Shading Patterns," Energies, MDPI, vol. 11(4), pages 1-26, April.
    12. Rajput, Pramod & Shyam, & Tomar, Vivek & Tiwari, G.N. & Sastry, O.S. & Bhatti, T.S., 2018. "A thermal model for N series connected glass/cell/polymer sheet and glass/cell/glass crystalline silicon photovoltaic modules with hot solar cells connected in series and its thermal losses in real ou," Renewable Energy, Elsevier, vol. 126(C), pages 370-386.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    2. Merino, S. & Sánchez, F.J. & Sidrach de Cardona, M. & Guzmán, F. & Guzmán, R. & Martínez, J. & Sotorrío, P.J., 2018. "Optimization of energy distribution in solar panel array configurations by graphs and Minkowski’s paths," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 48-58.
    3. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    4. Pareek, Smita & Dahiya, Ratna, 2016. "Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules," Energy, Elsevier, vol. 95(C), pages 561-572.
    5. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    6. Dolara, Alberto & Lazaroiu, George Cristian & Leva, Sonia & Manzolini, Giampaolo, 2013. "Experimental investigation of partial shading scenarios on PV (photovoltaic) modules," Energy, Elsevier, vol. 55(C), pages 466-475.
    7. Masa-Bote, Daniel & Caamaño-Martín, Estefanía, 2014. "Methodology for estimating building integrated photovoltaics electricity production under shadowing conditions and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 492-500.
    8. Zhang, Zhen & Wu, Jun & Wang, Lei & Liu, Fuguang & Jia, Peng & Dai, Lei & Lu, Yue & Bian, Tiezheng, 2020. "The analysis on simulation and invalidation of hot-spot temperature distribution in micro-defective crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 147(P1), pages 2218-2228.
    9. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    10. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    11. Jena, Debashisha & Ramana, Vanjari Venkata, 2015. "Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 400-417.
    12. Malathy, S. & Ramaprabha, R., 2015. "Comprehensive analysis on the role of array size and configuration on energy yield of photovoltaic systems under shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 672-679.
    13. Ahmad, R. & Murtaza, Ali F. & Ahmed Sher, Hadeed & Tabrez Shami, Umar & Olalekan, Saheed, 2017. "An analytical approach to study partial shading effects on PV array supported by literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 721-732.
    14. Martinez-Rubio, A. & Sanz-Adan, F. & Santamaria, J., 2015. "Optimal design of photovoltaic energy collectors with mutual shading for pre-existing building roofs," Renewable Energy, Elsevier, vol. 78(C), pages 666-678.
    15. Orozco-Gutierrez, M.L. & Ramirez-Scarpetta, J.M. & Spagnuolo, G. & Ramos-Paja, C.A., 2014. "A method for simulating large PV arrays that include reverse biased cells," Applied Energy, Elsevier, vol. 123(C), pages 157-167.
    16. Tian, Xinyi & Wang, Jun & Yuan, Shuang & Ji, Jie & Ke, Wei & Wang, Chuyao, 2023. "Investigation on the electrical performance of a curved PV roof integrated with CIGS cells for traditional Chinese houses," Energy, Elsevier, vol. 263(PC).
    17. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    18. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    19. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    20. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1181-1190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.