IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v43y2015icp1114-1126.html
   My bibliography  Save this article

Design and simulation of a solar supplied multifunctional active power filter and a comparative study on the current-detection algorithms

Author

Listed:
  • Bouzelata, Yahia
  • Kurt, Erol
  • Altın, Necmi
  • Chenni, Rachid

Abstract

Parallel to growing grid-integrated applications, the power converters have been an important research field for the power conversion and power quality. The converters can be used in different power levels ranging from large adjustable speed drives to low power household applications and office media. The generated current harmonics in the grids due to the nonlinear loads are considered to be one of the encountered problems to overcome. In the present paper, we propose a multifunctional active power filter (APF) fed by a PV system in order to remove these harmonics problems. In addition, a review of the maximum power point tracking (MPPT) techniques is presented. The design and the analyses were carried out in MATLAB/Simulink software. The simulation system has a nonlinear load which causes a harmonic disturbance and increases the total harmonic distortion (THD) in the grid line. The proposed APF removes the most leading harmonics by using two different current detection algorithms and the obtained results are compared in terms of current THD level and the power factor. Besides, the proposed APF system exports PV generated power to the grid efficiently. The PV array was accompanied by a boost converter and P&O maximum power point tracking algorithm to determine the active power level according to the PV system operation conditions. The supercapacitor is used to remove the power fluctuations because of the varying climatic conditions. Thus, the proposed multifunctional APF compensates the reactive power, filters the harmonic components of the nonlinear load, and exports the PV power to the grid. As a consequence, it is confirmed that the proposed solar supplied APF improves the grid power quality and the THD values, which have been found as 1.45% and 1.42% for fundamental positive sequence and p–q algorithms, respectively.

Suggested Citation

  • Bouzelata, Yahia & Kurt, Erol & Altın, Necmi & Chenni, Rachid, 2015. "Design and simulation of a solar supplied multifunctional active power filter and a comparative study on the current-detection algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1114-1126.
  • Handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:1114-1126
    DOI: 10.1016/j.rser.2014.11.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114010429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.11.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Shuhui & Haskew, Timothy A. & Li, Dawen & Hu, Fei, 2011. "Integrating photovoltaic and power converter characteristics for energy extraction study of solar PV systems," Renewable Energy, Elsevier, vol. 36(12), pages 3238-3245.
    2. Park, Minwon & Seo, Hyo-Ryong & Lee, Dong-Han & Yu, In-Keun, 2009. "Characteristics analysis of a PV-AF-SPE system under several irradiation conditions," Renewable Energy, Elsevier, vol. 34(3), pages 499-503.
    3. Bhatnagar, Pallavee & Nema, R.K., 2013. "Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 224-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erol Kurt & Davut Özhan & Nicu Bizon & Jose Manuel Lopez-Guede, 2021. "Design and Implementation of a Maximum Power Point Tracking System for a Piezoelectric Wind Energy Harvester Generating High Harmonicity," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    2. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    3. Wang, Long & Wang, Tongguang & Wu, Jianghai & Chen, Guoping, 2017. "Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design," Energy, Elsevier, vol. 120(C), pages 346-361.
    4. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    5. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koohi-Kamalі, Sam & Rahim, N.A. & Mokhlis, H. & Tyagi, V.V., 2016. "Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 131-172.
    2. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    3. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    4. García-Triviño, Pablo & Torreglosa, Juan P. & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2016. "Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system," Energy, Elsevier, vol. 115(P1), pages 38-48.
    5. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    6. Kebir, Anouer & Woodward, Lyne & Akhrif, Ouassima, 2019. "Real-time optimization of renewable energy sources power using neural network-based anticipative extremum-seeking control," Renewable Energy, Elsevier, vol. 134(C), pages 914-926.
    7. Bhatti, Abdul Rauf & Salam, Zainal & Aziz, Mohd Junaidi Bin Abdul & Yee, Kong Pui & Ashique, Ratil H., 2016. "Electric vehicles charging using photovoltaic: Status and technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 34-47.
    8. Suliang Ma & Mingxuan Chen & Jianwen Wu & Wenlei Huo & Lian Huang, 2016. "Augmented Nonlinear Controller for Maximum Power-Point Tracking with Artificial Neural Network in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 9(12), pages 1-24, November.
    9. Kofinas, P. & Doltsinis, S. & Dounis, A.I. & Vouros, G.A., 2017. "A reinforcement learning approach for MPPT control method of photovoltaic sources," Renewable Energy, Elsevier, vol. 108(C), pages 461-473.
    10. Gao, Xian-Zhong & Hou, Zhong-Xi & Guo, Zheng & Chen, Xiao-Qian, 2015. "Reviews of methods to extract and store energy for solar-powered aircraft," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 96-108.
    11. Sabzali, Ahmad J. & Ismail, Esam H. & Behbehani, Hussain M., 2015. "High voltage step-up integrated double Boost–Sepic DC–DC converter for fuel-cell and photovoltaic applications," Renewable Energy, Elsevier, vol. 82(C), pages 44-53.
    12. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.
    13. Ehsanul Kabir & Ki-Hyun Kim & Jan E. Szulejko, 2017. "Social Impacts of Solar Home Systems in Rural Areas: A Case Study in Bangladesh," Energies, MDPI, vol. 10(10), pages 1-12, October.
    14. Pindado, Santiago & Cubas, Javier, 2017. "Simple mathematical approach to solar cell/panel behavior based on datasheet information," Renewable Energy, Elsevier, vol. 103(C), pages 729-738.
    15. Zheng, Huiying & Li, Shuhui & Challoo, Rajab & Proano, Julio, 2014. "Shading and bypass diode impacts to energy extraction of PV arrays under different converter configurations," Renewable Energy, Elsevier, vol. 68(C), pages 58-66.
    16. Zhang, Neng & Sutanto, Danny & Muttaqi, Kashem M., 2016. "A review of topologies of three-port DC–DC converters for the integration of renewable energy and energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 388-401.
    17. Kumar, Gaurav & Panchal, Ashish K., 2014. "Geometrical prediction of maximum power point for photovoltaics," Applied Energy, Elsevier, vol. 119(C), pages 237-245.
    18. Al-Saffar, Mustafa A. & Ismail, Esam H., 2015. "A high voltage ratio and low stress DC–DC converter with reduced input current ripple for fuel cell source," Renewable Energy, Elsevier, vol. 82(C), pages 35-43.
    19. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    20. Jiang, Lian Lian & Nayanasiri, D.R. & Maskell, Douglas L. & Vilathgamuwa, D.M., 2015. "A hybrid maximum power point tracking for partially shaded photovoltaic systems in the tropics," Renewable Energy, Elsevier, vol. 76(C), pages 53-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:1114-1126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.