IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7709-d591749.html
   My bibliography  Save this article

Design and Implementation of a Maximum Power Point Tracking System for a Piezoelectric Wind Energy Harvester Generating High Harmonicity

Author

Listed:
  • Erol Kurt

    (Department of Electrical and Electronics Engineering, Technology Faculty, Gazi University, Beşevler, Ankara TR-06500, Turkey)

  • Davut Özhan

    (Department of Electronics, Mardin Vocational High School, Mardin Artuklu University, Mardin TR-47200, Turkey)

  • Nicu Bizon

    (Faculty of Electronics, Communications and Computers Science, University of Pitesti, 110040 Pitesti, Romania)

  • Jose Manuel Lopez-Guede

    (Department of Systems Engineering and Automatic, Faculty of Engineering Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, 01006 Vitoria-Gasteiz, Spain)

Abstract

In this work, a maximum power point tracking (MPPT) system for its application to a new piezoelectric wind energy harvester (PWEH) has been designed and implemented. The motivation for such MPPT unit comes from the power scales of the piezoelectric layers being in the order of μW. In addition, the output generates highly disturbed voltage waveforms with high total harmonic distortion (THD), thereby high THD values cause a certain power loss at the output of the PWEH system and an intense motivation is given to design and implement the system. The proposed MPPT system is widely used for many different harvesting studies, however, in this paper it has been used at the first time for such a distorted waveform to our best knowledge. The MPPT consists of a rectifier unit storing the rectified energy into a capacitor with a certain voltage called V OC (i.e., the open circuit voltage of the harvester), then a dc-dc converter is used with the help of the MPPT unit using the half of V OC as the critical value for the performance of the control. It has been demonstrated that the power loss is nearly half of the power for the MPPT-free system, the efficiency has been increased with a rate of 98% and power consumption is measured as low as 5.29 μW.

Suggested Citation

  • Erol Kurt & Davut Özhan & Nicu Bizon & Jose Manuel Lopez-Guede, 2021. "Design and Implementation of a Maximum Power Point Tracking System for a Piezoelectric Wind Energy Harvester Generating High Harmonicity," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7709-:d:591749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haidar Islam & Saad Mekhilef & Noraisyah Mohamed Shah & Tey Kok Soon & Addy Wahyudie & Mahrous Ahmed, 2021. "Improved Proportional-Integral Coordinated MPPT Controller with Fast Tracking Speed for Grid-Tied PV Systems under Partially Shaded Conditions," Sustainability, MDPI, vol. 13(2), pages 1-27, January.
    2. Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2021. "MPPT of Permanent Magnet Synchronous Generator in Tidal Energy Systems Using Support Vector Regression," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    3. Bouzelata, Yahia & Kurt, Erol & Altın, Necmi & Chenni, Rachid, 2015. "Design and simulation of a solar supplied multifunctional active power filter and a comparative study on the current-detection algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1114-1126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
    2. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    3. Ahmed G. Abo-Khalil & Mohammad Alobaid, 2023. "Optimized Control for PMSG Wind Turbine Systems under Unbalanced and Distorted Grid Voltage Scenarios," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    4. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    5. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    6. Umme Kulsum Jhuma & Shameem Ahmad & Tofael Ahmed, 2022. "A Novel Approach for Secure Hybrid Islanding Detection Considering the Dynamic Behavior of Power and Load in Electrical Distribution Networks," Sustainability, MDPI, vol. 14(19), pages 1-27, October.
    7. Wang, Long & Wang, Tongguang & Wu, Jianghai & Chen, Guoping, 2017. "Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design," Energy, Elsevier, vol. 120(C), pages 346-361.
    8. Muhammed Y. Worku & Mohamed A. Hassan & Luqman S. Maraaba & Md Shafiullah & Mohamed R. Elkadeem & Md Ismail Hossain & Mohamed A. Abido, 2023. "A Comprehensive Review of Recent Maximum Power Point Tracking Techniques for Photovoltaic Systems under Partial Shading," Sustainability, MDPI, vol. 15(14), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7709-:d:591749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.