IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v42y2015icp1047-1054.html
   My bibliography  Save this article

Performance evaluation and characterization of a 3-kWp grid-connected photovoltaic system based on tropical field experimental results: new results and comparative study

Author

Listed:
  • Farhoodnea, Masoud
  • Mohamed, Azah
  • Khatib, Tamer
  • Elmenreich, Wilfried

Abstract

In this article, the results on the characterization and performance analysis of a 3-kWp grid-connected photovoltaic (PV) system are presented. Six-month performance data for the system installed at the Universiti Kebangsaan Malaysia campus are used. The analyzed system consisted of a 3-kWp monocrystalline silicon PV array connected to an indoor 3-kW inverter. Mathematical models for the system are developed based on the collected performance data to provide accurate performance models. In addition, technical criteria are applied to evaluate the performance and to assess the viability and feasibility of the system. The experimental results show that the average efficiency of the PV module is 10.11%, whereas the inverter has the average efficiency of 95.15%. In addition, the average monthly PV performance ratio and average capacity factor of the system are 77.28% and 15.70%, respectively.

Suggested Citation

  • Farhoodnea, Masoud & Mohamed, Azah & Khatib, Tamer & Elmenreich, Wilfried, 2015. "Performance evaluation and characterization of a 3-kWp grid-connected photovoltaic system based on tropical field experimental results: new results and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1047-1054.
  • Handle: RePEc:eee:rensus:v:42:y:2015:i:c:p:1047-1054
    DOI: 10.1016/j.rser.2014.10.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114009150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.10.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrero, C. & Ramírez, D. & Rodríguez, J. & Platero, C.A., 2011. "Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I–V curve," Renewable Energy, Elsevier, vol. 36(11), pages 2972-2977.
    2. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    3. Seng, Lim Yun & Lalchand, G. & Sow Lin, Gladys Mak, 2008. "Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia," Energy Policy, Elsevier, vol. 36(6), pages 2130-2142, June.
    4. Tebibel, Hammou & Labed, Sifeddine, 2013. "Performance results and analysis of self-regulated PV system in Algerian Sahara," Renewable Energy, Elsevier, vol. 60(C), pages 691-700.
    5. Ishaque, Kashif & Salam, Zainal & Shamsudin, Amir & Amjad, Muhammad, 2012. "A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 99(C), pages 414-422.
    6. Leloux, Jonathan & Narvarte, Luis & Trebosc, David, 2012. "Review of the performance of residential PV systems in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1369-1376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the pay-back period of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 122(C), pages 458-470.
    2. Humada, Ali M. & Aaref, Ashty M. & Hamada, Hussein M. & Sulaiman, Mohd Herwan & Amin, Nowshad & Mekhilef, Saad, 2018. "Modeling and characterization of a grid-connected photovoltaic system under tropical climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2094-2105.
    3. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    5. Saleheen, Mohammed Zeehan & Salema, Arshad Adam & Mominul Islam, Shah Mohammad & Sarimuthu, Charles R. & Hasan, Md Zobaer, 2021. "A target-oriented performance assessment and model development of a grid-connected solar PV (GCPV) system for a commercial building in Malaysia," Renewable Energy, Elsevier, vol. 171(C), pages 371-382.
    6. Tamer Khatib & Wilfried Elmenreich & Azah Mohamed, 2017. "Simplified I-V Characteristic Tester for Photovoltaic Modules Using a DC-DC Boost Converter," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    7. Armendariz-Lopez, J.F. & Luna-Leon, A. & Gonzalez-Trevizo, M.E. & Arena-Granados, A.P. & Bojorquez-Morales, G., 2016. "Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico," Renewable Energy, Elsevier, vol. 87(P1), pages 564-571.
    8. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    9. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    10. Meza, Carlos Germán & Zuluaga Rodríguez, Catalina & D'Aquino, Camila Agner & Amado, Nilton Bispo & Rodrigues, Alcantaro & Sauer, Ildo Luis, 2019. "Toward a 100% renewable island: A case study of Ometepe's energy mix," Renewable Energy, Elsevier, vol. 132(C), pages 628-648.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajesh, R. & Mabel, M. Carolin, 2016. "Design and real time implementation of a novel rule compressed fuzzy logic method for the determination operating point in a photo voltaic system," Energy, Elsevier, vol. 116(P1), pages 140-153.
    2. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    3. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    4. Movilla, Santiago & Miguel, Luis J. & Blázquez, L. Felipe, 2013. "A system dynamics approach for the photovoltaic energy market in Spain¤," Energy Policy, Elsevier, vol. 60(C), pages 142-154.
    5. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    6. Mehdi Tavakkoli & Jafar Adabi & Sasan Zabihi & Radu Godina & Edris Pouresmaeil, 2018. "Reserve Allocation of Photovoltaic Systems to Improve Frequency Stability in Hybrid Power Systems," Energies, MDPI, vol. 11(10), pages 1-19, September.
    7. Sathyamurthy, Ravishankar & El-Agouz, S.A. & Nagarajan, P.K. & Subramani, J. & Arunkumar, T. & Mageshbabu, D. & Madhu, B. & Bharathwaaj, R. & Prakash, N., 2017. "A Review of integrating solar collectors to solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1069-1097.
    8. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    9. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    10. La Monaca, Sarah & Ryan, Lisa, 2017. "Solar PV where the sun doesn’t shine: Estimating the economic impacts of support schemes for residential PV with detailed net demand profiling," Energy Policy, Elsevier, vol. 108(C), pages 731-741.
    11. Silvano Vergura, 2018. "A Statistical Tool to Detect and Locate Abnormal Operating Conditions in Photovoltaic Systems," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    12. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    13. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    14. Lakhani, Raksha & Doluweera, Ganesh & Bergerson, Joule, 2014. "Internalizing land use impacts for life cycle cost analysis of energy systems: A case of California’s photovoltaic implementation," Applied Energy, Elsevier, vol. 116(C), pages 253-259.
    15. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    16. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    17. Hadipour, Amirhosein & Rajabi Zargarabadi, Mehran & Rashidi, Saman, 2021. "An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis," Renewable Energy, Elsevier, vol. 164(C), pages 867-875.
    18. Milosavljević, Dragana D. & Pavlović, Tomislav M. & Piršl, Danica S., 2015. "Performance analysis of A grid-connected solar PV plant in Niš, republic of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 423-435.
    19. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    20. Nabil Obeidi & Mostefa Kermadi & Bachir Belmadani & Abdelkarim Allag & Lazhar Achour & Saad Mekhilef, 2022. "A Current Sensorless Control of Buck-Boost Converter for Maximum Power Point Tracking in Photovoltaic Applications," Energies, MDPI, vol. 15(20), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:42:y:2015:i:c:p:1047-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.